

Photovoltaic Systems team up with Smart Grids

Gerd Heilscher

Prof. Gerd Heilscher - Ulm University of Applied Sciences

Technik Informatik & Medien

University of Applied Sciences

Agenda

- Introduction
 - Electric Energy System
 - PV System Grid Integration
- Today's and Future Challenges
- PV Systems & Smart Grids
- Conclusion

Introduction - Electric Energy System Balancing Load and Power Input

 Quarter hourly forecast of supply for all power input

Quarter hourly forecast of load profiles for each single client
Based on measured and synthetical load profiles

 Differences between supply and demand have to be matched with backup power stations in real time

There is only a monetary value of electricity when its needed This has to be respected also by solar electricity!

Electricity Network Operation Today

Network Operator (TSO/DSO)

- Balancing
- Frequency control
- Voltage control
- Network operators have no measurements at the low voltage level

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences 29th EU PVSEC, Amsterdam, Netherlands, 2014.

Agenda

Introduction

- Electric Energy System
- PV System Grid Integration
- Today's and Future Challenges
- PV Systems & Smart Grids
- Conclusion

Introduction – PV Systems Grid Integration PV Systems - Grid & Market Integration

- Net Metering 365 $\int d=1$ 365 $\int d=1$
- Feed in Tarifs $\int_{a=1}^{20} \left(-\frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k}} \right) > \sum_{k=1}^{20} \sum_{k=1}^{20} \frac{1}{\sqrt{k}} + \frac{1}$

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences

Introduction – PV System Grid Integration Solar Energy Input in Real Time

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences

Introduction – PV Systems Grid Integration From Single PV-Systems to LV Transformer Level

Reverse Energy Flow at Distribution Level

- Black line indicates the average load curve of the 134 households
- Yellow background quarter hourly solar radiation at the test site
- The load measured at the low voltage transformer drops during daytime due to feed in of solar power (1 second resolution)
- Between 9 AM and 5 PM load flow is reverse at the transformer

Source: G. Heilscher, H. Ruf: Ulm University of Applied Sciences, 2012

Hochschule Ulm

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences

Introduction – PV Systems Grid Integration

Outlook Solar Roof Potential at Distribution Level

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences

Introduction – PV Systems Grid Integration Outlook Solar Roof Potential

• Power input at LV transformer

 50% of Transformers overloaded with total solar roof potential

Agenda

- Introduction
 - Electric Energy System
 - PV System Grid Integration
- Today's and Future Challenges
- PV Systems & Smart Grids
- Conclusion

Today's & Future Challanges

Photovoltaic > Load

Balancing becomes difficult due to growing error in load forecast

Feed in Management Is a potential solution needs Standards

High invstements to prepare grid for distribute generation

Information misssing from LV network

Market design for solar electricity

Hochschule Ulm

Agenda

- Introduction
 - Electric Energy System
 - PV System Grid Integration
- Today's and Future Challenges
- PV Systems & Smart Grids
- Conclusion

PV Systems Communication Today

- Three times investment cost
- Barrier for further market development

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences 29th EU PVSEC, Amsterdam, Netherlands, 2014.

First Steps towards a DER-Communication Standard From SunSpec to IEC61850

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences

Smart Meter Infrastructure Development

- BSI defining Protection Profiles
- Security Module in the Smart Meter Gateway
- Controlable Local Systems (CLS) connected to Smart Meter Gateway (PV Systems, switchable loads)
- Distributed PV-Systems are first useful application for this infrastructure
- Will drive down costs

PV Systems within the Smart Meter Infrastructure

- BSI defining Protection Profiles
- Security Module in the Smart Meter Gateway
- Controlable Local Systems (CLS) connected to Smart Meter Gateway (PV Systems, switchable loads)
- Distributed PV-Systems are first useful application for this infrastructure
- Will drive down costs

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences 29th EU PVSEC, Amsterdam, Netherlands, 2014.

Existing Standards for Communication in Power Systems in Place

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences

IEC 61850 PV Model defined

- 66 - 61850-7-420/FDIS © IEC(E)

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences

Smart Grid International Facility Network

- Primary goal: Develop and demonstrate a consensus-based interoperability certification standard for advanced Distributed Energy Resources (DERs).
 - Design and compare advanced interoperability test-beds.
 - Perform round-robin testing of advanced DER.
 - Compare test results, communications methods, and automation procedures.
 - Gradually improve draft test procedures for advanced DER with the goal of becoming an internationally-accepted standard.

IEC61850-90-7 Advanced Inverter Functions

- New 'smart' inverters will include multiple advanced functions
 - Autonomous: Inverter response to local voltage and frequency conditions
 - Commanded: Remote control (e.g., on/off, set power factor)
- Utilities will modify distributed energy resource (DER) behavior using communications. Reliable interoperability will be required.

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences

29th EU PVSEC, Amsterdam, Netherlands, 2014.

Source: J. Johnson, Sandia Laboratories

Agenda

- Introduction
 - Electric Energy System
 - PV System Grid Integration
- Today's and Future Challenges
- PV Systems & Smart Grids
- Conclusions

Conclusion and Outlook

- Automatic registration of new PV systems
- PV systems deliver information on the grid status of the low voltage grid
- PV systems support grid services (voltage & frequency stability)
 - Certification, configuration and administration of these grid services
- Feed in management cost will drop significantly
- Make use of secure energy information networks
- Connect PV system with markets
- PV systems work together with the grid in the distribution network automation
- Communication skills are a prerequisite for micro grids and power cells

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences 29th EU PVSEC, Amsterdam, Netherlands, 2014.

Questions ?

Ulm University of Applied Sciences Prof. Gerd Heilscher Eberhard Finckh Str. 11 D-89079 Ulm

D +49 179 597 8024 heilscher@hs-ulm.de

Photovoltaic Systems team up with Smart Grids

PV Systems team up with Smart Grids Prof. Gerd Heilscher – Ulm University of Applied Sciences

29th EU PVSEC. Amsterdam. Netherlands. 2014.

Personal Background

- Since 2006 Ulm, University of Applied Sciences, Professor on energy data management for decentralized renewable energy systems
- 2002-2006 meteocontrol GmbH Energy & Weather Services, director
 - Monitoring services for renewable energy systems
 - Weather forecast services for 50 utilities in Germany
- 1998-2001 IST EnergieCom GmbH, director and main shareholder
 - Monitoring of PV systems for several utilities in Germany
- 1991-1998 IST Energietechnik GmbH, shareholder and director
 - Intensified Monitoring within the 1000-Roof-Photovoltaic-Programme
- 1989-1991 IST Energietechnik GmbH, project engineer
- 1988 University of Oldenburg, Master of Science in Renewable Energy

 1987 Munich, University of Applied Sciences, Bachelor in Electrical Engineering

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences 29th EU PVSEC, Amsterdam, Netherlands, 2014.

Impact of Distributed Generation on Network Stability

Source: http://www.vde.com/en/fnn/pages/50-2-hz-study.aspx; September 2011

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences 29th EU PVSEC, Amsterdam, Netherlands, 2014.

- Unexpected high overproduction of PVpower in September 2010
- Complete negative balancing reserve power (4.3 GW) plus balancing power of neighboring countries (2.8 GW) was used to balance the grid
- Renewable Energy balancing accounts had not been up to date
- Since April 2011 management of the RE balancing accounts is improved
 - Actual number and size of installed PV power is registered and updated monthly
 - Actual power from RE input is measured at reference systems and calculated for the total portfolio
 - 15 Min day ahead forecasts for most DSO RE account is in place

PV-Integration-Review Germany – Rules & Standards

Reactive Power from Distributed Inverters

- Active power feed-in increases voltage magnitudes
- Violation of local voltage limitations might lead to cost intensive network reinforcements
- Reactive power provision by PV inverters ensures to stay within limits cost effectively

Source: T. Stetz, Fraunhofer IWES, 2011.

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences

PV-Integration-Review Germany – Rules & Standards **Frequency Stability**

$$\Delta P = 20 P_{M} \frac{50,2 Hz - f_{Grid}}{50 Hz} \text{ at } 50.2 \text{ Hz} \iff f_{Grid} \iff 51.5 \text{ Hz}$$

 P_M = Generated Power

 ΔP = Power Reduction

f_{Grid} = System Frequency

at 47.5 Hz <= f_{Grid} <= 50.2 Hz \rightarrow No restrictions at f_{Grid} <= 47.5 Hz or f_{Grid} >= 51.5 Hz \rightarrow Disconnection

- In the beginning cutout at fixed limits
- This regulation became a danger for grid stability
- Cutout limits have been changed
- Active power limitation at over frequency supports frequency stabilization

Source: BDEW/VDN 2004, translation SMA

PV-Integration-Review Germany – Rules & Standards Low Voltage Ride Through at Grid Failure

 Generator at the medium voltage grid have to operator also in case of grid failure

 Generator must remain operational above red line

Source: BDEW/VDN 2004, translation SMA

Solar Power Prediction Scheme

Source: E. Lorenz at al, University of Oldenburg, 2010.

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences 29th EU PVSEC, Amsterdam, Netherlands, 2014.

Three different Disciplines... have to Understand Each Other

Main topic	Financial break even	Weather of tomorrow	Load Balancing
Heartbeat	1 Second	1 Hour	15 Minutes
Forecast	years	days	Tomorrow 8h00, 8h15,

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences

Energy Meteorology

- Adapt PV systems to the energy economy and utility system management aspects
 - Real time data for observe ability
 - Interaction
 - Grid assistance

- Develop forecast products to the needs of the variable renewable power
 - Higher time resolution
 - New forecast parameters (ramps)

- Invest into energy meteorology
- Adapt utility grid to variable distributed power input

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences

Introduction – Electric Energy System Renewable Electricity Market Integration

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences

PV-Integration-Review Germany – Rules & Standards **Evolution of PV grid services in Germany**

	Medium Voltage			Low Voltage		
	2007	2008	2012	2007	2008 / 2011	2012
Grid Connection	 PV systems have to be connected Definition of grid access point in shortest dist. Feedback on schedule and cost of grid connection within 8 weeks 			 PV systems <30kW use existing grid connection Cost of grid connection with PV owner Cost of grid extension with grid operator 		
Metering	 Daily quarter hourly forecast of PV input by DSO and TSO 		• PV > 100kW need meter communication	 Every PV system has a meter Daily quarter hourly forecast of PV input by DSO and TSO 		• PV > 100kW need meter communication
Feed-in management (curtailment)	No curtailment for PV systems	 P > 100kW Curtailment to e.g. 60%, 30%,0% 	All systems Curtailment to 60%,30%, 0%	No curtailment for PV systems	P > 100kW Curtailment to 60%,30%, 0% of Pn at grid overload	 Curtailment for every system P<30kW power reduction to 70% (option)
Frequency stability	Cut off at f > 50.2 Hz f < 49,5 Hz	off at 50.2 Hz• Stay on! 47,5Hz < f < 51.5Hz• Reduce P if f > 50.2Hz • Cut off at f < 47,5Hz, f > 51.5Hz		Cut off at f > 50.2 Hz f < 49.5 Hz	 Stay on! 47,5Hz < f < 51.5Hz Reduce P if f > 50.2Hz Cut off at f < 47,5Hz, f > 51.5Hz 	
Voltage stability	No grid $\cos \varphi = = \pm - 0.95$ stabilityCharacteristic of profile and gradient defined by local utility		95 f profile and d by local utility	No rules for PV systems	S_{Emax} < 3.68kVA ϕ = +/-0.95 3.68kVA < S_{emax} < 13.8kVA ϕ = +/-0.95 S_{Emax} > 13.8kVA ϕ = +/-0.9	
Grid Failure No rules Low voltage ride through		No rules for PV systems				

PV Systems team up with Smart Grids

Prof. Gerd Heilscher – Ulm University of Applied Sciences

Comparison Germany - Hawaii Grid Layout

Prof. Gerd Heilscher – Ulm University of Applied Sciences 29th EU PVSEC, Amsterdam, Netherlands, 2014.

Operation Control Centre – RED, Spain

Renewable Energy Input

Transmission Grid

