

Project No. 608930

FP7-SMARTCITIES-2013

OPtimising Hybrid Energy grids

for smart citieS

WP4 System Modelling and Simulation for the Evaluation of the OrPHEuS Control Strategies

Deliverable 4.3.2

Technical evaluation of the OrPHEuS control strategies with future business model

D. Basciotti¹, S. Henein¹, H. Brunner¹, D. Stakic², K. Ditz²

¹AIT

²HSU

Version:	1.0
Due Date:	30 June 2016
Submission Date:	25 January 2017
Lead Coordinator:	¹ AIT

Copyright

@ Copyright 2013-2017 The OrPHEuS Consortium

Consisting of

Coordinator	WIP – Renev	WIP – Renewable Energies (WIP)											
Participants	Hochschule	Ulm (HSU)				Germany							
	Stadtwerke	Ulm GmbH (SWU)			Germany							
	Technische L	Jniversität V	Vien (T	UW-EE	G)	Austria							
	Austrian Inst		Austria										
	Deutsches Zentrum für Luft- und												
	Raumfahrt E												
	NEC Europe	Ltd. (NEC)				UK							
	Lulea Teknis	Sweden											
	Skellefteå Kr	skellefteå Kraft (SKR)											

This document may not be copied, reproduced, or modified in whole or in part for any purpose without written permission from the OrPHEuS Consortium. In addition to such written permission to copy, reproduce, or modify this document in whole or part, an acknowledgment of the authors of the document and all applicable portions of the copyright notice must be clearly referenced.

All rights reserved.

This document may change without notice.

Deliverable Description

Abstract: This deliverable provides the technical evaluation of the OrPHEuS control strategies co-simulation results enabling hybrid grid optimization using future business models, from the perspective of WP4. The deliverable first introduces an investigation methodology for a continuous enhancement of the control strategies developed in WP5, and then provides the technical indicators assessment for the two demo sites with different scenarios and variations: 1) removal of peak oil boiler usage and integration of waste heat from additional industrial customers for the district heating network of Skellefteå, Sweden and 2) storing and distributing heat produced with surplus photovoltaic power through the district heating network in Ulm, Germany. An additional scenario involving power-to-gas solution for the city of Ulm has been investigated only from the technical point of view, without the involvement of a dedicated control strategy from WP5. The final evaluation results contribute towards the holistic evaluation analysis task in WP7. smart cities, hybrid energy grid, co-simulation based evaluation, hybrid grid Key Words:

words: smart cities, hybrid energy grid, co-simulation based evaluation, hybrid grid control strategy, smart grid, surplus photovoltaic power, E-rods, waste heat, power-to-gas, ICT

Document History

Version	Date	Authors	Description
0.1	14.10.2016	AIT	D4.3.2 Draft of deliverable outlining
0.6	18.01.2017	AIT	D4.3.2 Draft of deliverable without SKR2 results from
			electricity side
0.7	19.01.2017	NEC/HSU/WIP	Review of version 0.6
0.8	19.01.2017	AIT	D4.3.2 First Draft including all sections
0.9	24.01.2017	NEC/HSU/WIP	Review of version 0.8
1.0	25.01.2017	AIT	D4.3.2 Final version

Dissemination Level

	Dissemination Level														
PU	Public	Public													
PP	Restricted to o	Restricted to other program participants (including the Commission Services)													
RE	Restricted (including the	to a Commissi	group on Services)	specified	by	the	Consortium								
со	Confidential, (including the	only Commissi	for on Services)	members	of	the	consortium								

Executive Summary

The OrPHEuS project explores hybrid energy network control system for smart cities implementing novel cooperative local grid and inter-grid control strategies for the optimal interactions between multiple energy grids. This is achieved by enabling simultaneous optimization for individual response requirements, energy efficiencies and energy savings as well as coupled operational, economic and social impacts. Starting from existing system setups in two cities, enhanced operational scenarios are demonstrated for today's market setup, as well as for future market visions. The deliverable supports the achievement of the STO3: Extended hybrid energy network modeling of cities' Hybrid Energy Networks, and of the objective results: Advances respecting different time horizons and time operational needs.

The main scope of the deliverable D4.3.2 (Task 4.3) is the technical evaluation and validation of the OrPHEuS collaborative control strategies for hybrid grids, developed in WP5, under **future business** models. The assessment and validation of the control strategies' simulation results is performed for the two demo sites, respectively Skellefteå (Sweden) and Ulm (Germany) for different scenarios and variations. The technical evaluation has been considered part of an iterative process for the definition/enhancement of the control strategies. The technical evaluation aimed at validating the scenarios' results from a technical operation point of view, in which operational limits, violations and/or possible technical impacts on the systems, according to the defined thermal and electrical KPIs in D4.2, have been investigated. It has also to be reported that deliverable D4.3.2 differs from deliverable D5.3.2 which evaluates the control strategies' performance, assessing achievements based on control strategy functionalities, targets and goals.

An additional scenario involving a power-to-gas solution for the city of Ulm has been investigated only from the technical point of view, without the involvement of a dedicated control strategy from WP5.

The technical evaluation of the different scenarios and variations contributes to the assessment of the control strategies' potential for the enhancement of hybrid grids. The evaluation methodology and the analysis of the simulation results for the single domains for both demo sites is described in Section 2. The evaluation of the control strategies for both demo sites from a hybrid grid prospective is reported in Section 3. The needed enhancement for the control strategies are coupled within the analysis of the results in an iterative process as feedback to WP5.

Administrative Overview

Task Description

Task 4.3: OrPHEuS control strategies evaluation in simulation environment

Input from: Task 5.3, Task 2.3, WP3

The control strategies developed in WP5 task 5.3 are modelled and integrated in the simulation and evaluation environment of Task 4.3. The different load and generation models from Task 4.1 and 4.2, including historical data from the demo sites (WP3), deliver the input parameter for the model-based predictive OrPHEuS control strategies.

The analysis of the capability of the control strategies to overcome possible technical constraints is done in task 4.3, taking into consideration the interaction of the different energy carriers based on different use cases and scenarios developed in cooperation with WP2 (thermal-electrical coupling), which will be evaluated in a second step.

The simulations give input for requirements of the monitoring system in WP3. Additionally the evaluation of the necessary data flows to run the control strategies gives input for ICT requirement and gap analysis of the demo sites in WP3. An iterative enhancement of the OrPHEuS control strategies will be done in WP5 according to the analysis of the simulation results.

Relation to the Scientific and Technological Objectives

This deliverable is related to the achievement of the STO3 – "Extended hybrid energy network modeling of cities' Hybrid Energy Networks" and of the objective / expected results: "Advances respecting different time horizons and time operational needs".

It is related to the Performance Indicator:

No.	Objective/expected result	Indicator name	STO	Delive rable	MS	Expected Progress		
						Year 1	Year 2	Year 3
15	Validation of the control strategies in the Simulation Environment	Simulation environment	STO3	D4.3.2	MS3			Due: M30 Draft: M27

Relations to activities in the Project

Relationship to previous and future tasks in the WP

- o Inputs:
 - $\circ\quad$ WP2 Task 2.3: different use cases and scenarios
 - WP3: historical data from the demo sites
 - WP5 Task 5.3: cooperative control strategies for both demo sites using current business model
- Outputs:
 - WP2: provides simulation evaluation results for evaluation/validation

- WP3: requirements of the monitoring system, ICT requirements and gap analysis of demo sites
- \circ $\;$ WP5: further improvement and enhancement of the control strategies
- WP7: control strategies technical evaluation results as an holistic analysis for the final recommendations

Terminologies

Definitions and abbreviations

The definitions and abbreviations are reported directly in the text.

Table of Contents

1	Int	roduct	ion	8
	1.1	Scop	be of the document	8
	1.2	Stru	cture of the document	8
2	Sin	gle do	mains: technical evaluation of the control strategies	9
	2.1	Met	hodology	9
	2.2	Skel	lefteå demo site 1	10
	2.2	.1	Introduction	10
	2.2	.2	Thermal domain	10
	2.2	.3	Electricity domain	16
	2.3	Ulm	demo site	21
	2.3	.1	Introduction	21
	2.3	.2	Electricity domain	21
	2.3	.3	Thermal domain	28
	2.3	.4	Ulm2: Power to gas scenario	32
3	Hyl	orid gr	id technical evaluation of the control strategies	36
	3.1	Skel	leftea demo site	36
	3.2	Ulm	demo site	36
A	nnex 1	: Skell	eftea Thermal Side	38
A	nnex 2	: Skell	eftea Electrical Side	ļ1
A	nnex 3	: Ulm	Thermal Side	1 6
A	nnex 4	: Ulm	Electrical Side	17
A	nnex 5	: Ulm	Power to Gas scenario	19
Re	eferen	ces	5	54
D	isclaim	er		55
С	ontact	s	5	56

1 Introduction

1.1 Scope of the document

The scope of this document is to support the overall aim of OrPHEuS on the development of collaborative hybrid grid control strategies on a simulation basis, by applying new control strategies in an enhanced multi-domain simulation environment (focusing on electricity and district heating domains). In the document, under the future business model boundary conditions, different variations for the demo site Skellefteå (Sweden) and UIm (Germany) have been investigated and with the help of the technical indicators defined in the deliverable D4.2 the related control concepts have been evaluated. The detailed description of control strategy algorithms, scenarios and variations is provided in the deliverable D5.3.2. Additionally it has to be reported that deliverable D4.3.2 does provide only the technical evaluation of results (operational limits violations and/or possible technical impacts on the system) and differs from deliverable D5.3.2 in which the evaluation of the control strategies performances is reported, e.g. including achievements based on control strategies' functionalities, targets and goals.

The document includes additionally the power-to-gas scenario involving power-to-gas solutions for the city of Ulm, investigated only from the technical point of view, without the involvement of a dedicated control strategy from WP5.

This deliverable is related to the achievement of the STO3 – "Extended hybrid energy network modeling of cities' Hybrid Energy Networks" and of the Objective / Expected result: - "Advances respecting different time horizons and time operational needs".

1.2 Structure of the document

This document is structured as follows:

Chapter 2 presents a **general description of the methodology** used to evaluate and enhance the proposed control strategies from WP5 in both demo sites from the point of view of the electric and the thermal grid systems. Additionally it describes the effects of the control strategies for the two demo sites while analysing the technical KPIs under different boundary conditions. Furthermore, it introduces a possible alternative with power to gas and the analysis of the results done by project partner HSU.

Chapter 3 introduces and **evaluates control strategies from the hybrid aspects** point of view, for the demo sites of Skellefteå (Sweden) and Ulm (Germany). This chapter presents the analysis of the interconnections between technical KPIs from both domains, respectively the electrical and thermal networks.

2 Single domains: technical evaluation of the control strategies

2.1 Methodology

The simulation set-up developed in Task 4.1 and described in the deliverable D4.1 serves as a real-life simulation-based testing lab for the OrPHEuS project and key performance indicators, defined in the deliverable D4.2, are used to test and compare the various scenarios and variations developed within WP5 and described in the deliverable D5.3.2. In this section the technical indicators from the D4.2 process are used for the evaluation of the simulation runs in order to assess the influence of the control strategies on the specific domains (electricity and thermal). The mutual interdependencies between the thermal and electricity domains are analyzed separately in Section 4. As a result from the evaluation of the single domains as well as from the hybrid grids point of view, enhancements have been provided to the control strategy concepts of WP5 as well as to the monitoring concepts of WP3. The details of the single domains control strategy evaluation are reported for the Skellefteå demo site in Section 2.2. The details of the single domains control strategy evaluation are reported for the Skellefteå for the Ulm demo site in the Section 2.3.

Moreover it has to be stated that the evaluation process has been serving the enhancement and improvement of both thermal and electrical models and control strategies development. This evaluation process takes into account not only technical operation limitations and technical KPIs for both electricity and thermal domains but also the possible application of these strategies using the capabilities of the existing and new devices. The continuous enhancement includes the added elements' design, their operation limitations and also the operation conditions and limits of both domains. Meanwhile the scenarios correspond to different seasons to reflect the real possible thermal and electrical consumption and production.

In order to investigate the sensitivity of control strategies to boundary condition variations (e.g. electricity demand increase, thermal demand increase, etc.) the OrPHEuS consortium agreed on testing a number of variations as described in detail in D5.3.2.

For the Skellefteå demo site as reported in the Sections 2.2.2 and 2.2.3, the evaluation of the simulation results has been performed for two different electricity tax conditions, since it is expected in the future that they will be significantly decreased from the current value, allowing power-to-heat solutions to enhance energy grid performances. Additionally, variations including different electric boiler sizes, electric battery capacities, different industrial load demands and heating demand conditions have been investigated. The simulations are visualized, when required, in a matrix scheme as showed for example in Figure 3.

For the Ulm demo site as reported in Sections 2.3.2 and 2.3.3 evaluation of the simulation results has been separately performed for the 2 main control strategies using one central electric boiler and one heat storage. As for the Skellefteå demo site, also for the Ulm2 scenario different system setting variations (limitations of heat overproduction export to Einsingen) as well as two PV penetration variations have been investigated.

A detailed description of the control strategies as well as parametric variation is reported in the deliverable D5.3.2.

2.2 Skellefteå demo site

2.2.1 Introduction

The evaluation of the KPIs from the simulation results for the Skellefteå demo site has been divided into the thermal and electricity domains and is reported respectively in the Sections 2.2.2 and 2.2.3. A short summary of the parametric variations is reported in the following paragraph.

- Size of the electric battery (4) –0MW/0MWh, 1MW/1MWh, 5/5MWh, 10MW/10MWh (peak load/capacity): on the basis of the analysis of the performance data of the electricity grid and the preliminary economic evaluation from WP3, WP4 recommended the investigation to start with these four sizes.
- Additional industrial customer electric load (4) 10-20-30-40 MW: WP3 recommended the investigation to start with these four sizes.
- Heat demand conditions (4) 0-5-10-20%: increase of the demand as compared to the typical winter conditions defined in D4.3.1. Four demand conditions have been chosen and the co-simulation investigations are limited to the winter season, which is defined as November to March. The 5 months were set by selecting the months most likely to require peak heating.
- Control strategies (2) baseline and "Control-R" (detailed description provided in D5.3.2): From the requirements of the stakeholders, WP5 set two practical control goals. One is the baseline (extension of the concept for the baseline defined in D5.3.1) for which the assumption that oil is not used anymore for heating is considered; "Control-R" considers to optimize the operation of the DH and electricity systems from a cost point of view (including CO₂ taxes and all operational costs).
- Electricity tax conditions (2): Two electricity tax conditions: respectively 0.5 €/MWh (based on possible future regulations to support electricity usage) and 19.5 €/MWh (as today conditions) on top of the electricity price.

In total, the simulation-based investigation delivered 64 baseline variations and 64 Control-R variations (as combinations of the abovementioned parameters). The evaluation of the simulation runs for the Skellefteå demo site in the case of the Scenario 1 is reported in the Sections 2.2.2 and 2.2.3 respectively for the thermal domain and the electricity domain.

A detailed description of the control strategies as well as parametric variation is reported in the deliverable D5.3.2.

2.2.2 Thermal domain

The analysis of the simulation runs under different boundary conditions (e.g. size of the electric battery, size of the additional industrial customer, etc.) is performed also considering the KPIs defined in the deliverable D4.2. The results, as shown for example in Figure 3, are visualized in a matrix approach by dividing them into 8 groups for which the columns are the size of the industrial customer (10 MW, 20 MW, 30 MW, 40 MW), and rows are the electricity tax conditions (0,5 \notin /MWh and 19.5 \notin /MWh). Results are presented by comparing the baseline with the alternative control strategy.

As explained in deliverable D5.3.2 in the description section of the Ulm Future Scenario, the baseline assumes no heat pump for the usage of waste heat from the industrial customer.

Figure 1 and Figure 2 show two single representative days in order to evaluate the effects of the control strategy on the heat production distribution (scenario with an electric boiler of 100 MW, electricity tax condition of 19.5 €/MWh, battery size 10MW/10MWh, additional industrial customer of 40MW, additional heating load of 20% and control R setup). On the representative day in January, see Figure 1, the target (from the district heating point of view reducing operational costs) is achieved by charging overnight the storage tank (and partly using heat from it) and during the day discharging the storage tank (until around 18:00) and using the biomass boiler, the CHP and the heat pump.

Figure 1: SKR2, Heat load distribution (representative day in January with control R)

On the representative day in March, see Figure 2, the target of reducing operational costs is achieved by using the CHP, the heat pump and the electric boiler. The storage tank buffers only heat produced from the electric boiler in the timeframe between 9:00 and 15:00. The biomass boiler is not operated for long periods (on the representative day in March for one full day).

Figure 2: SKR2, Heat load distribution (representative day in March with control R)

Figure 3 visualizes heat production distribution in a matrix approach for which the columns are the size of the industrial customer variations (10 MW, 20 MW, 30 MW, 40 MW), and rows are the electricity tax condition variations ($0.5 \notin$ /MWh and $19.5 \notin$ /MWh). From the analysis of the results, it can be stated that there is no effect of the electricity tax conditions on the decisions of the operation conditions, meaning the heat production distribution is similar with low and high electricity taxes.

Large variation in heat production from heat pump (using the waste heat from the additional industrial customer) and e-boiler occurs when varying the additional industrial customer electricity demand (available waste heat is coupled to the electricity demand of the industrial customer). The heat pump operation hours is for the industrial customer of 10 MW about 2900h, while for the case of an industrial customer of 40 MW is about 2100h with a reduction of about 800h. The heating demand increase (variations with 0, 5, 10 and 20%) shows a difference in the usage of both electric boiler and heat pump with a difference between 0 and 20% of 17% more usage of heat pump and 45% more electric boiler and no difference with different sizes of electric boilers.

Figure 4 visualizes heat distribution losses for the district heating network in a matrix approach for which the columns are the size of the industrial customer variations (10 MW, 20 MW, 30 MW, 40 MW), and rows are the electricity tax condition variations ($0.5 \notin$ /MWh and $19.5 \notin$ /MWh). From the analysis of the results, it can be stated that there is no effect of the electricity tax conditions on the decisions of the operation conditions, meaning the heat distribution losses is similar with low and high electricity taxes. Moreover the control strategy and the electric battery variations don't influence the heat distribution losses (no effect on the supply and return network temperatures). Heating demand variations have an effect with is a minimum value of heat distribution losses of 12300 MWh for the 0% heat demand increase scenario and 14800 MWh for the 20% heating demand increase scenario.

Figure 3: SKR2, Energy heat production distribution split in industrial customer variations (rows) and electricity tax conditions (columns)

Figure 4: SKR2, Heat losses split in industrial customer variations (rows) and electricity tax conditions (columns)

Figure 5 shows storage temperature average results for the industrial customer of 10MW. No large differences are occurring for other sizes of industrial customer (20 MW, 30MW and 40MW) and for different size of electric battery and therefore they are not represented in Figure 5. The tabular form of the complete dataset is reported in the Annex I. Moreover from the analysis of the results it can be stated that the control strategy reduces the usage of the storage tank with lower average storage temperatures compared to the baseline for all variations (decrease from 85°C to about 73°C for the case of heating demand increase of 20% by using directly more the heat pump.

Figure 5: SKR2, average temperature levels of the top layer for the electricity tax condition 0.5€/MWh (top) and 19.5 €/MWh (bottom)

2.2.3 Electricity domain

The analysis of the simulation runs under different boundary conditions (e.g. size of the electric battery, size of the additional industrial customer, etc.) is performed also considering the KPIs defined in the deliverable D4.2. The results, as shown for example in Figure 6, are visualized in a matrix approach by dividing them into 4 groups for which the columns are the size of the industrial customer (10 MW, 20 MW, 30 MW, 40 MW), and rows are the electricity technical KPI's (network losses, maximum voltage spread, etc.). Comparison are done for different scenarios and variations such as electricity tax conditions (epr1 corresponding to 0.5 €/MWh and epr2 corresponding to 19.5 €/MWh), different heat demand increase from 0% to 20% (named hd0, hd5, hd10, and hd20) and different electric storage sizes (Eb1, Eb5, and Eb10), see Section 2.2.1. The developed control strategies results are compared with the baseline. As explained in deliverable D5.3.2 in the description section of the UIm Future Scenario, the baseline assumes no heat pump for the usage of waste heat from the industrial customer.

Figure 6 shows a comparison of network losses of all scenario variations and control strategies, which demonstrates a reduction of about 14% in network losses for no heat demand increase scenario with epr2 (electricity price 19.5 Euro/MWh) and Eb1 (electric storage size 1 MW) (electrical industrial customer electricity load 10 MW). The same variation shows a voltage spread reduction of about 5%. The voltage spread reduction of the other different scenarios is between 16% and 42%, reflecting under voltage violations problems.

Figure 6: SKR2: network losses and maximum voltage spread of different scenarios and variations

The different variations of the scenarios, Industrial load 20 MW, Industrial load 30 MW and Industrial load 40 MW, show an increase in network losses between 28% and 34%.

Figure 7 presents the maximum transformer loading of transformer 1 which is reduced by 51.76% and 11.3% for scenario eprice1, no heat demand increase, and battery size 1 for both Industry 10 MW and Industry 20MW variations. On the contrary for both variations Industry 30 MW and Industry 40 MW, all different scenarios and variations show a transformer 1 loading increase. Additionally Figure 7 shows the duration of the transformer 1 overloading over 80% for 99% of the simulation time.

Figure 7: maximum first transformer loading and its duration of different scenarios and variations

Figure 8 shows that, there is transformer loading reduction of transformer 2 with respectively 33.3%, 10%, 31.3%, and 30% for the variations Industry 10 MW, Industry 20 MW, Industry 30 MW and Industry 40 MW for scenario eprice1, no heat demand increase, and electric battery size one. Additionally, Figure 8 shows the duration of the transformer 1 overloading over 80% which accounts for only 1% of the simulation time. Although in most scenarios and variations there is transformer loading reduction, still the values of the loading of both transformer are very high and are not within the acceptable operational limits.

Figure 8: maximum second transformer loading and its duration of different scenarios and variations

Figure 9 presents the maximum line loadings and the duration of the overloading of lines over 80%. It shows very high lines overloading between 160% and 315% which cannot be accepted even when the duration of some of these violations is short. These violations accounts for around 40% of the simulation period.

Figure 9: maximum line loadings and their durations of different scenarios and variations

As a conclusion from all results shown in this section there is an improvement of the different KPIs, especially for the scenario with low electricity tax conditions, no heat demand increase and electric storage size of 1 MW for different electricity industrial load consumptions. Nevertheless, both transformers and lines experience large violations of the network limits (loading exceeds 80% for long durations).

2.3 Ulm demo site

2.3.1 Introduction

For the Ulm demo site, two control strategies with one central electric boiler and heat storage have been evaluated: one is maximizing heat export, which targets to directly export the heat generated from PV surplus and the other is keeping the storage charged, which is targeted on keeping heat in the storage for local usage rather than exporting it.

As explained in deliverable D5.3.2 in the description section of the Ulm Future Scenario, the baseline assumes no storage tank installed and no usage of e-rods in Einsingen. The overall heat production comes from the 3.0 km long pipeline connected to the wider DH system of Ulm. Therefore all values were compared to the baseline values in order to evaluate the impact of different scenarios on the network KPIs and operation limits. The evaluation of the KPIs from the simulation results for the Ulm demo site has been divided into the electricity and thermal domains and is reported respectively in Sections 2.3.2 and 2.3.3.

For the two control strategies, a short summary of the parametric variations is reported in the following paragraph. For both control strategies, limitation of heat overproduction in Einsingen has been chosen and control goals have been analyzed.

• **PV penetration rate** – PV50% and PV75%: the penetration share describes the number of buildings on which PV plants are installed (e.g. 50% means that 50% of the buildings have a rooftop PV plant). Two possible penetration shares are suggested as the possible future by HSU and SWU.

• Limitation of heat overproduction in Einsingen – 0 kW - 100 kW – 200 kW - 300 kW - 400 kW – 500 kW - unlimited: on the basis of the limitations of thermal energy export to the heating network of Ulm, and therefore the amount of discharging is still limited by the sum of the local heat demand of Einsingen and the maximum heat export value of the particular scenario under consideration, these overheat production limitations are recommended to be investigated. No electric boiler usage is considered for the baseline.

• **Control strategies**– Baseline, Control A, and Control B: detailed description of the control strategies included in deliverable D5.3.2

The evaluation of the simulation runs for the Ulm demo site in the case of the Scenario 2 is reported in the Section 2.3.2 and 2.3.3 respectively for the electricity and thermal domain.

A detailed description of the control strategies as well as parametric variations is reported in the deliverable D5.3.2.

2.3.2 Electricity domain

The analysis of the simulation runs under different boundary conditions (e.g. PV penetration share, limitation of heat overproduction to Ulm as well as the two control strategies) is performed by assessing the KPIs defined in the deliverable D4.2. The results are visualized in a matrix approach by dividing them into 6 groups for which columns are the control strategies (A and B), and rows are the KPIs (total network losses, maximum voltage spread and duration transformer loading). The results are presented by comparing the baseline with the alternatives. The two PV penetrations levels are

analysed separately and presented in Sections 2.3.2.1 and 2.3.2.2. The complete dataset of the results for the Ulm scenario is reported in Annex 4.

2.3.2.1 **PV 50% scenario**

Figure 10 shows a comparison of the different technical KPIs defined for electricity grid comparing the baseline with different heat transport limitation variations for control strategies A and B. In the same time these reflect the effect of these variations on the electricity network KPIs.

Figure 10: total network losses and maximum transformer loading

As shown in Figure 10, there is a reduction of the total network losses of about 17.3% in the case of control A with unlimited heat overproduction in Einsingen. Similar results for transformer loading can be seen in Figure 10, as control strategy A with unlimited limitation of heat overproduction shows the maximum reduction of the maximum transformer loading, compared to other scenarios, about 10.2%.

Figure 11: maximum line loading and maximum voltage spread

The same scenario shows a decrease of the maximum voltage spread of about 10.2% (Figure 11). With a total maximum voltage spread of 95%, this is within the limit. The results in Figure 11 shows

that there is no improvement in the line loadings as it increases in a range from 0.5% – 1.0% compared to the baseline scenario. The duration of maximum line overloading over 80% is about 10% of the whole simulation time. Control A reflects better results than Control B from the technical operational point of view. Control A variations show improvement in total network losses, transformer loading, and voltage band usage. From the total results shown in Figure 10 and Figure 11, the control A strategy with unlimited heat overproduction in Einsingen, shows the best results and can be considered as the best solution from the introduced variations.

2.3.2.2 **PV 75% scenario**

Figure 12 shows a comparison of the different technical KPIs defined for the electricity grid comparing the baseline with different heat transport limitation variations for control strategies A and B. In the same time these reflect the effect of these variations on the electricity network KPIs.

Figure 12: total network losses and maximum transformer loading

It shows similar results to the 50% PV penetration variation, as the total network losses decrease with about 19% in the case of control A with unlimited limitation of heat overproduction in Einsingen compared to the baseline scenario.

Similar results for transformer loading can be seen in Figure 12, as control strategy A with unlimited limitation of heat overproduction shows the maximum reduction of the maximum transformer loading, compared to other scenarios, of about 33.4%.

Figure 13: maximum line loading and maximum voltage spread

The same scenario shows a decrease of the maximum voltage spread of about 6.5% (Figure 13). With a total maximum voltage spread of 133.4%, this is not within the limit. As the results in Figure 13 shows that there is no improvement in the line loadings as it increases in a range from 0.4% - 0.7%

compared to the baseline scenario. The duration of maximum line overloading over 80% is about 16% of the whole simulation time.

Considering the evaluation of performance results in D5.3.2, it can be stated that analysing the technical indicators of the control strategies Control A performs better than Control B from the technical operational point of view. Control A variations show improvement in total network losses, transformer loading, and voltage band usage. From the total results shown in Figure 12 and Figure 13, the control A strategy with unlimited heat overproduction in Einsingen, shows the best results and can be considered as the best solution from the introduced variations.

2.3.3 Thermal domain

The analysis of the simulation runs under different boundary conditions (e.g. PV penetration share, limitation of heat overproduction to Ulm as well as different control strategies) is performed also considering the KPIs defined in the deliverable D4.2. The results, as showed for example in the Figure 17, are visualized in a matrix approach by dividing them into 3 groups for which the columns are the control strategies (A and B), and rows are the PV penetration shares (50% and 75%). Results are presented by comparing the baseline with the alternative. The complete dataset of the results for the Ulm scenario is reported in the Annex 3.

As explained in deliverable D5.3.2 in the description section of the Ulm Future Scenario, the baseline assumes no storage tank installed and no usage of e-rods in Einsingen. The overall heat production comes from the 3.0 km long pipeline connected to the wider DH system of Ulm. Therefore in the baseline both energy productions from e-rod and energy demand from the wider city of Ulm is respectively 0 MWh.

From Figure 14 to Figure 16 three single representative days are displayed in order to evaluate the effects of the control strategies on the heat production distribution (control A in the specific examples). In the case of control A, the target is to directly export the heat generated from PV surplus, by keeping discharging the storages as much as possible. Whenever there is PV generation surplus, the heating power of the e-boiler is set to exactly that surplus as long as the heat storage is not full, which, due to the aggressive heat export policy, is expected to happen only rarely. As shown in Figure 14, as soon as the storage temperature, due to charging from the e-rod, reaches the required supply temperature of the network the storage is discharged. Considering a small surplus in January from PV, the discharging of the storage is limited to daytime periods between 12:00 and 15:00.

Figure 14: Ulm2, Heat load distribution (representative day in January with control A)

Considering the lower requirements in transitional period (April) and summer (July), Figure 15 and Figure 16 show an increasing discharging time period, which in the case of July is between 08:00 and 19:00, corresponding to the PV generation time period.

Figure 17 shows in blue bars: 1) the heat demand from Einsingen, 2) the exported heat (consumption) to UIm and 3) the heat losses from the pipelines (including the connection to UIm); and in red bars: 1) heat production coming from UIm and 2) heat production from the e-rod.

Considering PV penetration 75% in the case of heat export limitation of 300 kW it shows that 1397 MWh is produced from the e-rod, covering totally the heat distribution losses and heat exported to the wider district heating grid of Ulm. In the case of PV penetration of 50% the effect of the heat export limitations show that in the case of unlimited export a maximum of 1692 MWh per year can be produced covering totally heat distribution losses but only partly the heat demand from Ulm.

In case of Control B the control strategy avoids exporting the heat to the city of Ulm (except when the storage is about to get full) and uses the surplus PV as heat production for the Einsingen demand. In this case having as target the Einsingen demand as priority, the limitation of Ulm are less influencing than in the control A. E-rod energy production for the different variations of heat export limitations is between 896 MWh and 1197 MWh. Small differences are assessed between PV50% and PV75%, considering the heat demand from Einsingen the limiting factor for e-rod energy production.

Figure 17: Ulm2, energy demand and production for different heat export limitations

Figure 18 shows the top layer temperatures from the highest to the lowest value for different heat export limitations split into different PV penetration and control strategies. Following the control logic of control B, the storage top temperature is not affected by the heat export limitations across all variations (see also Figure 19 for average values). The resulting decreasing storage top layer temperature follows the set point of the network supply temperature (linear function of outdoor temperature with 90°C at -10°c and 75°C at +15°C). In case of control A, the larger the amount of heat that can be exported to the city of Ulm, the lower the heat stored in the storage tank, assuming that the control logic simultaneously releases the heat from the storage tank when available (see also Figure 19 for average values).

Figure 18: Ulm2, temperature levels of the top layer ordered from the highest to the lowest value for different heat export limitations

Figure 19: Ulm2, average temperature levels of the top layer ordered from the highest to the lowest value for different heat export limitations

2.3.4 Ulm2: Power to gas scenario

2.3.4.1 *Motivation*

Within the framework of the OrPHEuS project, this scenario did not require any control strategy development. A separate approach, from a feasibility study point of view, has been performed by HSU and it is reported in the following sections. The details of the methodology (modelling approach) used for the power-to-gas scenario are reported in Annex 5.

Power to gas represents an alternative solution, which has been requested by the network operator SWU to be analyzed, and recently is attracting more interest from the research and development point of view. Power to gas (PtG) systems could be a solution to minimize electric surplus problems. They are an opportunity for peak shaving measures and for seasonal storage. Power-to-gas systems are not state-of-the-art but actual R&D topics with some single demonstration projects around the world (with deliverable D3.2 showing an overview of the current PtG projects in Germany).

In principle, when more energy (e.g. from solar panels) is produced than consumed, the power can be used to split water it into hydrogen and oxygen by using electrolysis or hydrolysis. Further existing possibilities are:

- Up to 5% of hydrogen can be directly stored in the gas grid [8].
- The hydrogen can be stored in tanks and used in other applications
- With the methanation process, the hydrogen can be transformed into methane. This can be realized with the Sabatier process or in a bio-reactor by using specific bacteria [9]

The advantage of methanation is the available gas grid, which represents a big storage. It is possible to use the produced gas for heat supply or it can be converted back to electricity if needed. The actual problem concerning this process is the low efficiency. In combination with waste heat recovery processes efficiencies up to 85% are possible [8].

2.3.4.2 Scenario description

It has to be highlighted that PtG systems also do not avoid completely voltage band violations or overloaded lines due to the fact that those systems are connected to a single connection point of the electric grid. From that point of view decentral electric power loads is the only option able to completely avoid grid reinforcement [3].

The hybrid scenario extends the domestic hot water (DHW) and space heating (SH) discussed in D4.3.1 by using a PtG as coupling point to the gas grid. The output data (transformer load) from the co-simulation of ULM1 SH and DHW scenario is used as input for the PtG scenario. The analysis involved the scenario under PV-potential 50 % and 75 %. In Einsingen is the PtG scenario set on top of scenario 1.2 were decentral PtH for SH and DHW is involved. For Hittistetten the whole PV-surplus is used for the hydrogen production. However in Hittistetten no co-simulation has been considered.

2.3.4.3 Baseline Results

To evaluate the baseline in case of the gas grid and the correlation of the energy flows in the hybrid system, the heat demand and the PV surplus in the test area Einsingen is balanced and cumulated as shown in Figure 20. For this analysis only power and energy flows from the total test area Einsingen are used and neither grid, nor storage nor control strategies were implemented.

Figure 20 Cumulated daily energy demand of the electrical PV surplus and the total heat demand over on year test side Einsingen.

The PtG approach can only balance the PV surplus with the gas consumption. The gas demand is only part of the total heat demand and is therefore lower. The lower efficiency of the power to gas process ($\eta(H_2) \approx 0.75$ and $\eta(CH_4) \approx 0.5$) does not totally negates the effect on the seasonal PV surplus.

Figure 21 shows the total load flow of the gas in nominal cubic meters for the two test areas. It shows the strong difference of the gas consumption between summer and winter and the temperature dependency. Gas grid areas with more industrial and business companies have also in summer time a higher gas consumption for their production processes. These will result in a positive effect for PtG because more power can directly consumed and does not have to be stored or transported over long distances. The values in Figure 21 were simulated with the gas grid model described in Annex 5.

Figure 21 Total gas load flow at Einsingen (top) and Hittistetten (bottom) for the baseline

Table 1 gives an overview of the resulting PV surplus energy for three PV future scenarios in Einsingen. These scenarios are defined for the co-simulation in Einsingen. The additional hydrogen percentage is limited due to technical and legal (max. 5 %) specifications. This has a strong influence to the available feed-in capacity of the gas grid for hydrogen. The yearly seasonal PV surplus from summer into winter time could cover from 7 % to 23 % of the annual heat demand depending on the different PV potential scenarios. Without the seasonal PV surplus the usage could be from 6 % to 16 %. If a seasonal PV surplus is considered the usage rate increases by 7 % of the heat demand in the 100%-PV potential scenario.

	PtG (H2)	PtG (CH4)
100%-PV Surplus [MWh]	213.73	96.02
75%-PV Surplus [MWh]	126.87	43.87
50%-PV Surplus [MWh]	11.31	0

Table 1: seasonal PV su	plus for local	PtG (H2) and	l (CH4) in	Einsinger
-------------------------	----------------	--------------	------------	-----------

With the geometrical and topological information of the gas grid infrastructure the grid volume and the energy storage capacity can be calculated. The medium pressure (MP) grid is supplying a bigger area (Figure 24 in Annex 5) than the in OrPHEuS defined test area Einsingen. The downscaling of the storage capacity from the MP grid area to the test area is based on a calculation of a factor based on the inhabitance in the region and the test area. The MP gas grid in the test area Einsingen provides a storage capacity of 207.1 kWh for methane (100 % potential) and 3.11 kWh (5 % potential) for hydrogen, respectively. Suburban MP gas grids, as e.g. in the test area Einsingen, cannot deliver the

seasonal storage capacity which is necessary if the seasonal PV surplus will increase to a high level of usage of roof potential for PV. Most urban areas include a high pressure (HP) distribution gas grid and can use this in combination with the PtG technology as a seasonal storage. A first estimation of the HP gas grid of the city of Ulm results in a storage capacity of 600 MWh. Combined with an average base load of 106.45 MW for summer time (June, July, August) results a high power shifting potential. The capacity in Ulm is strongly influenced by a pipe storage and is therefore not typical for most European cities. This pipe storage is fed from the transmission grid and has about the same volume as the total distribution HP gas grid of the city. However, it is operated on a higher pressure level and these results in a higher energy storage capacity of 84 MWh (0.7 kWh per inhabitant of Ulm). [3]

2.3.4.4 *Power to gas scenario results*

The results from the grid models and approach of the controller and planning parameters of the electrolyser and methanation are described in Annex 5. These efforts deliver a more precise analysis than the calculation in the baseline analysis in Section 2.3.4.3. The daily average load flow at the transformer for the year 2014 in Hittistetten and Einsingen has been analysed. Figure 22 shows the analysis with PV50% and PV75% potential with and without electrolyzer for both Einsingen and Hittistetten. Negative values mean load flow without electrolyzer shows that on average for those hours of the day the total PV-production is higher than the demand over the year. For Einsingen (left), based on the results of Ulm SH and DHW with control strategy 2, a large amount of PV-surplus has already been used by the developed power-to-heat solution. For Hittistetten no power-to-heat has been developed therefore there are higher negative values in the case without electrolyzer. In both cases, the maximum power at the transformer will be strongly reduced, resulting in complete consumption of the PV Energy; see Figure 22. This reduces also the stress for all higher voltage grid levels and gains direct positive effect for the voltage, frequent and power regulation at the medium voltage grid to the city.

Figure 22: Daily averaged yearly loadflow with and without electrolyzer for Einsingen (left) and Hittistetten (right)

3 Hybrid grid technical evaluation of the control strategies

The following sections describe the evaluation from a combined thermal and electricity domain point of view for the Skellefteå and Ulm demo sites in Scenario 2 (future business model). "Best" configurations and effects of the boundary conditions for the control strategies performances are summarized and highlighted.

3.1 Skelleftea demo site

The Skellefteå future scenario analysed in this deliverable can be considered as "thermal-domain" driven, due to its nature. Indeed the aim of the scenario is the removal of peak oil boiler usage (zero CO_2 emissions targets) and waste heat usage from an additional industrial customer with high electricity demand. The high electricity demand has the implication on the electricity grid to stress it and therefore, both from an economic perspective and energy efficient perspective, hybrid grid solutions investigation assessed possible synergies. The coupling points between the two grids are represented by the heat pump and the electric boiler, the first enabling the conversion of low grade waste heat.

According to the evaluation of the results for the electric domain there is an improvement of the KPI's especially for the scenario with low electricity tax conditions, no heat demand increase and an electric storage of 1MW for the different industrial electricity load scenarios. Nevertheless transformer and line loading violations, outside the allowed/accepted limit, are occurring. This scenario therefore requires that, from a technical point of view, the maximum electric boiler size of 35 MW is considered or that decentralised small electric boilers are installed.

For the district heating network, the control strategy enables the efficient usage of low grade waste heat from the industrial customer, with heat pump operation of about 2900 hours per year in the case of an industrial customer of 10 MW and 2100h when the industrial customer electricity demand increases to 40 MW. Under future heating demand increase perspectives, the controller supports an additional increase of heat pump and electric boiler heat production respectively of 17% and 45% compared to the status quo heating demand of the grid. From the analysis of the technical indicators, the control strategy shows limited effects on the operation of the storage tank (reduced usage) and heat distribution losses (limited influence on the supply network temperature).

3.2 Ulm demo site

The UIm future scenario analysed in this deliverable aims at increasing local consumption of electricity surplus generated by the PV plants, where a central electric boiler and heat storage are used as coupling points transferring energy from the electricity grid to the heating grid, in order to avoid transformer overloadings and electricity flow backs to the grid.

According to the evaluation of the results for the electric domain, Control A variations show improvement in total network losses, transformer loading and voltage band usage. From the total results shown in Figure 10, Figure 11, Figure 12 and Figure 13 the control A strategy with unlimited limitation of heat overproduction in Einsingen, outstands among the different variations, due to its contribution to minimize network losses, transformer loadings, as well as voltage band usage. There is a reduction of the total network losses of about 17.3% and 19% in the case of control A with unlimited limitation of heat overproduction in Einsingen, which reflects the reduction of the flow

back to the medium voltage through the share of the PV systems. Similar results for transformer loading can be seen in Figure 10 and Figure 12, as control strategy A with unlimited limitation of heat overproduction shows the maximum reduction of the maximum transformer loading, compared to other scenarios, about 10.2% and 33.4%. The same scenario shows a decrease of the maximum voltage spread in about 10.2% and 6.5% (Figure 11 and Figure 14). The results in Figure 11 and Figure 14 show that there is no improvement in the line loadings as it increases in a range from 0.4% - 1.0% compared to the baseline scenario. The duration of maximum line overloading over 80% is about 10% - 15% of the whole simulation time. These results are reflected through the 50% PV and 75% PV variations results analysis.

On the thermal domain side the controller, under various heat export limitation conditions as well as target goals (control A and control B) maximizes up to 1692 MWh/year the heat production from PV surplus, covering totally the heat distribution losses but only partly the heat demand from Einsingen. Heat export limitations to the wider grid of Ulm have an effect on the storage design, showing a clearly decreased need for heat storage when heat produced with PV surplus can be directly exported to the wider grid of Ulm.

Annex 1: Skelleftea Thermal Side

The results from the simulation runs for the winter period (November to March) is reported in tabular form in the Annex 1

electrici ty price [€/MWh]	battery size [MW/M Wh]	industry size [MW]	heat demand increase [%]	Strategy [-]	max eboiler output [MW]	heat demand [MWh]	heat losses [MWh]	biomass [MWh]	chp heat [MWh]	eboiler [MWh]	heatpu mp [MWh]
0_51	1	10	0	baseline	43.6	227133	12280	52803	141402	51647	0
0_51	1	10	0	control	45.3	227133	12265	22392	156748	25578	41103
0_51	5	10	0	control	45.3	227133	12265	22392	156748	25578	41103
0_51	10	10	0	control	45.3	227133	12265	22392	156748	25578	41103
0_51	1	20	0	baseline	43.6	227133	12280	52803	141402	51647	0
0_51	1	20	0	control	37.5	227133	12245	8346	152504	10815	74134
0_51	5	20	0	control	37.5	227133	12245	8346	152504	10815	74134
0_51	10	20	0	control	37.5	227133	12245	8346	152504	10815	74134
0_51	1	30	0	baseline	43.6	227133	12280	52803	141402	51647	0
0_51	1	30	0	control	25.4	227132	12199	4092	142163	2182	97309
0_51	5	30	0	control	25.4	227132	12199	4092	142163	2182	97309
0_51	10	30	0	control	25.4	227132	12199	4092	142163	2182	97309
0_51	1	40	0	baseline	43.6	227133	12280	52803	141402	51647	0
0_51	1	40	0	control	25.6	227132	12162	2539	130153	1145	111844
0_51	5	40	0	control	25.6	227132	12162	2539	130153	1145	111844
0_51	10	40	0	control	25.6	227132	12162	2539	130153	1145	111844
0_51	1	10	5	baseline	41.5	238488	12954	53553	140577	63157	0
0_51	1	10	5	control	49.3	238488	12901	30789	157210	25464	43763
0_51	5	10	5	control	49.3	238488	12901	30789	157210	25464	43763
0_51	10	10	5	control	49.3	238488	12901	30789	157210	25464	43763
0_51	1	20	5	baseline	41.5	238488	12954	53553	140577	63157	0
0_51	1	20	5	control	40.6	238488	12885	10786	153939	14692	77781
0_51	5	20	5	control	40.6	238488	12885	10786	153939	14692	77781
0_51	10	20	5	control	40.6	238488	12885	10786	153939	14692	77781
0_51	1	30	5	baseline	41.5	238488	12954	53553	140577	63157	0
0_51	1	30	5	control	29.9	238489	12851	5413	145898	3832	102021
0_51	5	30	5	control	29.9	238489	12851	5413	145898	3832	102021
0_51	10	30	5	control	29.9	238489	12851	5413	145898	3832	102021
0_51	1	40	5	baseline	41.5	238488	12954	53553	140577	63157	0
0_51	1	40	5	control	32.1	238488	12821	3797	136056	2213	115041
0_51	5	40	5	control	32.1	238488	12821	3797	136056	2213	115041
0_51	10	40	5	control	32.1	238488	12821	3797	136056	2213	115041
0_51	1	10	10	baseline	39.0	249845	13565	58998	142261	67395	0
0_51	1	10	10	control	48.0	249844	13500	38874	158019	25801	45895
0_51	5	10	10	control	48.0	249844	13500	38874	158019	25801	45895
0_51	10	10	10	control	48.0	249844	13500	38874	158019	25801	45895
0_51	1	20	10	baseline	39.0	249845	13565	58998	142261	67395	0
0_51	1	20	10	control	44.2	249844	13547	15396	155381	17099	80732

0.54	-		10				40543	15000	455004	47000	00700
0_51	5	20	10	control	44.2	249844	13547	15396	155381	17099	80732
0_51	10	30	10	baseline	39.0	249844	13565	58998	142261	67395	0
0_51	1	30	10	control	34.3	243043	13500	6538	149135	6039	106852
0_51	-	30	10	control	34.3	240044	13500	6550	140125	6035	100052
0_51	5	30	10	control	34.3	249844	13500	6538	149135	6039	106852
0_51	10	30	10	control	34.3	249844	13500	6538	149135	6039	106852
0_51	1	40	10	baseline	39.0	249845	13565	58998	142261	67395	0
0_51	1	40	10	control	34.6	249844	13482	4423	141443	3601	119063
0_51	5	40	10	control	34.6	249844	13482	4423	141443	3601	119063
0_51	10	40	10	control	34.6	249844	13482	4423	141443	3601	119063
0_51	1	10	20	baseline	74.1	272556	14815	63283	154349	73736	0
0_51	1	10	20	control	58.4	272556	14787	46796	159315	37088	48193
0_51	5	10	20	control	58.4	272556	14787	46792	159311	37095	48193
0_51	10	10	20	control	58.4	272556	14787	46796	159315	37088	48193
0_51	1	20	20	baseline	74.1	272556	14815	63283	154349	73736	0
0_51	1	20	20	control	46.1	272556	14835	28446	155481	19040	88429
0_51	5	20	20	control	46.1	272556	14835	28446	155481	19040	88429
0_51	10	20	20	control	46.1	272556	14835	28446	155481	19040	88429
0_51	1	30	20	baseline	74.1	272556	14815	63283	154349	73736	0
0_51	1	30	20	control	43.5	272556	14804	12251	152316	10772	116025
0_51	5	30	20	control	43.5	272556	14804	12251	152316	10772	116025
0_51	10	30	20	control	43.5	272556	14804	12251	152316	10772	116025
0_51	1	40	20	baseline	74.1	272556	14815	63283	154349	73736	0
0_51	1	40	20	control	42.8	272556	14789	6809	148355	8902	127288
0_51	5	40	20	control	42.8	272556	14789	6809	148355	8902	127288
0_51	10	40	20	control	42.8	272556	14789	6809	148355	8902	127288
19_5	1	10	0	baseline	43.6	227133	12280	52803	141402	51647	0
19_5	1	10	0	control	41.8	227133	12265	22442	157533	24891	40954
19_5	5	10	0	control	41.8	227133	12265	22440	157534	24891	40955
19_5	10	10	0	control	41.8	227133	12265	22440	157532	24895	40954
19_5	1	20	0	baseline	43.6	227133	12280	52803	141402	51647	0
19_5	1	20	0	control	36.2	227133	12245	8338	153968	10148	73343
19_5	5	20	0	control	36.1	227133	12245	8340	154001	10142	73315
19_5	10	20	0	control	36.2	227133	12246	8338	154015	10163	73283
19_5	1	30	0	baseline	43.6	227133	12280	52803	141402	51647	0
19 5	1	30	0	control	25.1	227133	12198	4057	145831	1754	94094
_ 19 5	5	30	0	control	25.1	227133	12198	4057	145831	1754	94094
- 19 5	10	30	0	control	25.1	227133	12198	4057	145831	1754	94094
19 5	1	40	0	haseline	43.6	227133	12280	52803	141402	51647	0
19_5	1	40	0	control	27.6	227132	12156	2120	136736	1120	105693
19.5	5	40	0	control	27.6	227122	12156	2120	136736	1120	105693
19_5	10	40	0	control	27.0	227132	12150	2120	136726	1120	105602
19_5	10	40		baseline	27.0 41 F	22/132	12130	2120	140577	62157	102032
10 2		10	5	paseline	41.5	238488	12954	53553	1405//	0315/	0
19_5	1	10	5	control	49.3	238488	12902	31067	157789	24706	43662
19_5	5	10	5	control	49.3	238488	12902	31060	157788	24718	43659
19_5	10	10	5	control	49.3	238488	12902	31057	157800	24713	43654

19_5	1	20	5	baseline	41.5	238488	12954	53553	140577	63157	0
19_5	1	20	5	control	40.6	238488	12886	10772	155435	14031	76956
19_5	5	20	5	control	40.6	238488	12886	10769	155446	14018	76964
19_5	10	20	5	control	40.6	238488	12886	10769	155460	14020	76948
19_5	1	30	5	baseline	41.5	238488	12954	53553	140577	63157	0
19_5	1	30	5	control	30.1	238489	12851	5387	148975	3311	99483
19_5	5	30	5	control	30.1	238489	12851	5387	148975	3311	99483
19_5	10	30	5	control	30.1	238489	12851	5387	148975	3311	99483
19_5	1	40	5	baseline	41.5	238488	12954	53553	140577	63157	0
19_5	1	40	5	control	29.9	238488	12814	3739	141383	1783	110190
19_5	5	40	5	control	29.9	238488	12814	3739	141383	1783	110190
19_5	10	40	5	control	29.9	238488	12814	3739	141383	1783	110190
19_5	1	10	10	baseline	39.0	249845	13565	58998	142261	67395	0
19_5	1	10	10	control	45.5	249844	13503	39221	158557	24920	45894
19_5	5	10	10	control	45.5	249844	13503	39221	158557	24920	45894
19_5	10	10	10	control	45.5	249844	13503	39221	158557	24917	45897
19_5	1	20	10	baseline	39.0	249845	13565	58998	142261	67395	0
19_5	1	20	10	control	44.9	249844	13548	15389	156539	16495	80185
19_5	5	20	10	control	45.1	249844	13547	15391	156564	16463	80192
19_5	10	20	10	control	45.0	249844	13548	15388	156566	16461	80192
19_5	1	30	10	baseline	39.0	249845	13565	58998	142261	67395	0
19_5	1	30	10	control	34.5	249844	13502	6512	151756	5446	104849
19_5	5	30	10	control	34.5	249844	13502	6512	151756	5446	104849
19_5	10	30	10	control	34.5	249844	13502	6512	151756	5446	104849
19_5	1	40	10	baseline	39.0	249845	13565	58998	142261	67395	0
19_5	1	40	10	control	34.8	249844	13476	4381	145540	3200	115399
19_5	5	40	10	control	34.8	249844	13476	4381	145540	3200	115399
19_5	10	40	10	control	34.8	249844	13476	4381	145540	3200	115399
19_5	1	10	20	baseline	74.1	272556	14815	63283	154349	73736	0
19_5	1	10	20	control	58.4	272556	14788	47239	159864	36111	48172
19_5	5	10	20	control	58.4	272556	14788	47238	159856	36114	48180
19_5	10	10	20	control	58.4	272556	14788	47242	159851	36117	48180
19_5	1	20	20	baseline	74.1	272556	14815	63283	154349	73736	0
19_5	1	20	20	control	46.1	272556	14836	28663	156628	18227	87871
19_5	5	20	20	control	46.1	272556	14836	28662	156631	18233	87867
19_5	10	20	20	control	46.1	272556	14836	28663	156632	18248	87853
19_5	1	30	20	baseline	74.1	272556	14815	63283	154349	73736	0
19_5	1	30	20	control	43.4	272556	14806	12221	154541	10152	114445
19_5	5	30	20	control	43.4	272556	14805	12215	154544	10153	114451
19_5	10	30	20	control	43.4	272556	14805	12215	154544	10153	114451
19_5	1	40	20	baseline	74.1	272556	14815	63283	154349	73736	0
19_5	1	40	20	control	43.3	272556	14791	6776	151165	8338	125072
19_5	5	40	20	control	43.3	272556	14791	6776	151165	8338	125072
19_5	10	40	20	control	43.3	272556	14791	6776	151165	8338	125072
L	L	L	L	L	L	L	l	L		l	l

Annex 2: Skelleftea Electrical Side

The results from the simulation runs for the winter period (November to March) is reported in tabular form in the Annex 2

strate				contr	NL	MTL1	MTL2	DTL1	DTL2	MLL	DLL	MVS
Ind 10	bat 1	hd0	epr 1	b	3757.13 143	149.8 28	45.99	24.875	0	317.2 64	89.75	66.5 85
Ind 10	bat 1	hd0	epr	r	3250.61	78.08	99.90 3	0	5.7638 89	315.1 06	38.611	69.6 7
Ind 10	bat 1	hd0	epr 2	b	3120.07 374	, 45.99 6	149.8 3	0	24.875	317.2 6	89.75	, 66.5 9
Ind 10	bat 1	hd0	epr 2	r	3224.21 125	72.27 1	146.9 5	0	9.2847 22	289.0 5	38.15	62.9 3
Ind 10	bat 1	hd5	epr 1	b	3494.64 035	149.3 4	46.00 36	30.375	0	314.6 72	92.277 778	64.0 94
Ind 10	bat 1	hd5	epr 1	r	3350.50 954	78.10 1	171.5 6	0	10.458 333	334.8 1	37.625	76.4 7
Ind 10	bat 1	hd5	epr 2	b	3494.64 214	46.00 4	149.3 4	0	30.375	314.6 7	92.277 778	64.1
Ind 10	bat 1	hd5	epr 2	r	3323.40 374	72.26 4	171.5 6	0	9.9097 22	334.8 1	36.868 056	76.4 7
Ind 10	bat 1	hd1 0	epr 1	b	3757.13 768	46.00 1	138.4 6	0	44.555 556	306.2 1	86.972 222	60.1 8
Ind 10	bat 1	hd1 0	epr 1	r	3412.14 792	78.10 4	159.2	0	10.312 5	322.9 7	38.840 278	72.8
Ind 10	bat 1	hd1 0	epr 2	b	3757.13 768	46.00 1	138.4 6	0	44.555 556	306.2 1	86.972 222	60.1 8
Ind 10	bat 1	hd1 0	epr 2	r	3385.41 034	73.28 8	157.0 1	0	9.7708 33	322.9 7	37.777 778	70.2 3
Ind 10	bat 1	hd2 0	epr 1	b	4249.76 897	46	235.6 3	0	34.555 556	497.3 1	92.506 944	122. 93
Ind 10	bat 1	hd2 0	epr 1	r	3798.85 798	195.2 95	78.14 51	17.034 722	0	405.4 28	52.409 722	93.8 49
Ind 10	bat 1	hd2 0	epr 2	b	4249.76 897	46	235.6 3	0	34.555 556	497.3 1	92.506 944	122. 93
Ind 10	bat 1	hd2 0	epr 2	r	3765.85 34	73.28 7	195.3	0	16.340 278	405.4 3	51.451 389	93.8 4
Ind 10	bat 5	hd0	epr 1	r	3260.58 43	159.4	100.8 64	9.6944 44	0.7222	315.1 05	38.611 111	69.6 7
Ind 10	bat	hd0	epr 2	r	3226.23	90.80 9	146.9	0.1041	9.2083	289.2	38.145	62.9 1
Ind 10	bat	hd5	epr 1	r	3360.30 34	100.8 8	171.5	0.7916	10.458	334.8	37.555	76.4
Ind 10	bat	hd5	epr 2	r	3325.85 772	91.81 7	171.5 6	0.0972	9.9722	334.8 6	36.881 944	76.4
Ind 10	bat	hd1	epr 1	r	3421.72	, 100.8 9	159.2	0.8541	10.305	322.9 7	38.812	72.8
Ind 10	bat	hd1	epr	r	3387.26	95.65	157.0 1	0.1041	9.7777	, 322.9 7	37.770 833	70.2 3
Ind	bat	hd2	epr	r	3808.86	100.9	195.2	0.9444	17.041	, 405.4 2	52.458	93.8 5
Ind	bat	hd2	epr	r	3768.17	95.65	9 195.3	0.1041	16.361	3 405.4	535	93.8
Ind	bat	hd0	∠ epr	r	3286.43	4 127.7	159.4	1.6736	9.6944	3 315.1	38.645	4 69.6

10	10		1		22	8	1	11	44	1	833	7
Ind	bat	1 10	epr		3230.84	108.2	146.8	0.3541	9.1736	289.9	38.173	62.8
10	10	hdU	2	r	093	3	4	67	11	2	611	6
Ind	bat		epr		3385.63		171.5		10.458	335.2	37.583	76.4
10	10	hd5	1	r	599	127.8	1	1.75	333	2	333	3
Ind	bat		epr		3330.02	108.5	171.5	0.3194		335.2	36.909	76.4
10	10	hd5	2	r	678	9	1	44	9.9375	2	722	3
Ind	bat	hd1	enr		3446.95	127.8		1 9027	10 277	322.9	38 819	-
10	10	0	1	r	506	1	159.2	78	778	7	444	72.8
Ind	bat	hd1	epr		3391.28	108.5	157.0	0.2847	9,7708	322.9	37.763	70.2
10	10	0	2	r	251	9	1	22	33	7	889	3
Ind	hat	hd2	enr		3833.74	127.8	195.2	1 9861	17 048	405.4	52 451	93.8
10	10	0	1	r	448	6	9	11	611	3	389	5
Ind	hat	hd2	enr		3771 55	108.4	,	0 2708	16 298	405.4	51 423	93.8
10	10	0	2	r	112	Q	195.3	33	611	3	611	33.0 Д
Ind	hat	0	enr		5629.09	85.47	151 3	35	25.611	305.2	80 166	66.3
20	1	hd0	1	b	2/18	2	2	100	111	1	667	1
Ind	hat		onr		7272 07	122.0	1/0 2	00 070	2 1 2 0 5		12 /65	57/
20	1	hd0	201 1	r	729	135.0	2	167	56	247.1	270	57.4 2
20	L hat				730		3 1E1 3	107	25 611	205.2	270	66.2
20	Dat 1	hd0	epi 2	b	5029.09 240	05.47 2	151.5	100	25.011	1	60.100	00.5
20	L		2		240	3	2 126 F	00.070	1 7016	1	12.961	
	bat	hd0	epr	r	7224.95	134.2	136.5	99.979	1.7916	248.2	12.801	55.0
20			2		023	9	9	167	67	8	111	8
Ind	bat	hd5	epr	b	5983.10	85.48	150.8	100	30.930	302.6	88.416	63.9
20	1		1		213	3	5		556	1	667	3
Ind	bat	hd5	epr	r	7484.90	136.9	149.6	99.979	4.0486	275.0	18.388	62.6
20	1		1	-	24	2	9	167	11	3	889	8
Ind	bat	hd5	epr	b	5983.10	85.48	150.8	100	30.930	302.6	88.416	63.9
20	1		2	-	213	3	5		556	1	667	3
Ind	bat	hd5	epr	r	7433.09	135.9	149.7	99.979	3.6111	275.3	17.881	62.6
20	1	1100	2		898	9	6	167	11	2	944	5
Ind	bat	hd1	epr	h	6230.94	140.0	85.47	45.666	100	294.1	83.736	59.6
20	1	0	1	, v	324	09	5	667	100	9	111	05
Ind	bat	hd1	epr	r	7642.54	160.0	138.3	65	99.986	296.7	20.562	68.8
20	1	0	1	I	644	21	81	0.5	111	68	5	65
Ind	bat	hd1	epr	h	6230.95	85.47	140.0	100	45.666	294.1	83.736	59.6
20	1	0	2	U	12	5	1	100	667	9	111	1
Ind	bat	hd1	epr		7602.72	138.3	162.1	99.986	5.9861	300.9	20.138	70.1
20	1	0	2	ſ	18	8	5	111	11	8	889	8
Ind	bat	hd2	epr	h	6671.16	85.47	236.9	100	37.604	485.2	87.840	122.
20	1	0	1	a	683	2	3	100	167	3	278	71
Ind	bat	hd2	epr		8024.52	138.4	164.5	99.993	9.4027	299.7	22.104	72.0
20	1	0	1	r	063	6	8	056	78	3	167	6
Ind	bat	hd2	epr		6671.16	85.47	236.9	100	37.604	485.2	87.840	122.
20	1	0	2	b	683	2	3	100	167	3	278	71
Ind	bat	hd2	epr		7974.53	138.4		99.993		299.7	21.666	72.0
20	1	0	2	r	31	2	164.6	056	8.6875	8	667	8
Ind	bat		epr		7276.46	153.5	140.3	99.798	2.1736	_	13.493	57.9
20	5	hd0	1	r	474	5	3	611	11	247.1	056	3
Ind	bat	1.	enr		7226 99	153 5	136.0	99.736	1.8472	247 0	12.770	55.4
20	5	hd0	2	r	917	5	8	111	22	3	833	1
Ind	hat		enr		7488 43	Ť	149.6	99.840	4 0347	275 0	18 3/17	63.1
20	5	hd5	1	r	42	156.5	- -	278	22	2,3.0	20.047	9
Ind	hat		enr		7436.65	15/1.0	149 7	99 792	3 6210	275 2	17 702	63.1
20	5 5	hd5	2	r	212	204.0	149.7 6	611	7.0213	1	611	6
Ind	bat	hd1	enr		76/5 96	157.0	160.0	00 851	6 /020	206.7	20 555	60.2
20		0	1	r	1045.00	0	100.0 2	167	0.4930 EC	230.7	20.000	09.5 7
20	5	U	T		401	9	۷	101	50	/	טכנ	/

Ind	bat	hd1	epr	r	7605.39	157.9	162.8	99.784	5.9305	302.0	20.131	70.9
20	5	0	2		229	9	1	722	56	6	944	9
Ind	bat	hd2	epr	r	8027.58	158.0	164.5	99.833	9.3888	299.7	22.131	72.5
20	5	0	1		13	6	7	333	89	7	944	6
Ind	bat	hd2	epr	r	/9//.63	158.0	164.5	99.847	8.6875	299.8	21.6/3	/2.5
20	5	0	2		062	3	9	222	2 4 7 2 6	2	611	/
Ind	bat	hd0	epr	r	/285.26	1/6./	140.3	99.520	2.1/36	247.1	13.541	58.0
20	10		1		228	2	3	833	11	240.2	667	1
ind	bat	hd0	epr	r	7234.50	1/6./	136.5	99.451	1.8055	248.2	12.847	55.6
20	10		2		285		9	389	50	8	222	/
	bat	hd5	epr 1	r	/49/.3/	1/8.8	149.6	99.527	4.0347	275.0	18.368	63.2 7
20	10 hot		1			4	9	//8	22	3	050	726
20	10	hd5	epr	r	7985.32 672	180.9	104.5	99.038	8.7013	299.8	21.743	/2.0
20	10	h al 1	Z		0/2		9	00 500	69	/	050	4
ind	bat	nai	epr	r	/654./0	180.8	160.0	99.590	6.4791	296.7	20.576	69.4 F
20	10	0	1		802	6	2	2/8	67	/	389	5
Ind	bat	hd1	epr	r	/613./8	180.8	162.3	99.541	6	300.9	20.013	70.9
20	10	0	2		8/5	6	5	667		1	889	70.0
Ind	bat	hd2	epr	r	8036.07	180.9	164.5	99.638	9.3888	299.8	22.166	72.6
20	10	0	1		464	2	7	889	89	2	667	2
Ind	bat	hd2	epr	r	7985.32	180.9	164.5	99.638	8.7013	299.8	21.743	72.6
20	10	0	2		672	2	9	889	89	7	056	4
Ind	bat	hd0	epr	b	9565.47	122.2	152.7	100	27.305	293.7	63.465	66.0
30	1		1		798	9	4		556	7	278	1
Ind	bat	hd0	epr	r	13036.3	187.1	105.3	100	0.4722	168.1	1.4583	38.4
30	1	nao	1	•	485	7	2	100	22	6	33	8
Ind	bat	hd0	epr	h	9565.47	122.2	152.7	100	27.305	293.7	63.465	66.0
30	1	nao	2	~	798	9	4	100	556	7	278	1
Ind	bat	hd0	epr	r	12853.6	187.6	104.8	100	0.4097	167.5	1.3263	38.1
30	1	nuo	2		56	1	8	100	22	4	89	3
Ind	bat	hd5	epr	h	9899.46	122.3	152.2	100	31.555	291.1	85.937	63.7
30	1	nus	1	D	16	122.5	8	100	556	4	5	3
Ind	bat	hd5	epr	r	13257.1	185.8	118.9	100	1.0277	195.5	2.9027	45.6
30	1	nus	1	'	583	8	2	100	78	5	78	4
Ind	bat	hd5	epr	h	9899.46	177.2	152.2	100	31.555	291.1	85.937	63.7
30	1	nus	2	b	16	122.5	8	100	556	4	5	3
Ind	bat	hdE	epr	~	13107.3	185.8	119.6	100	0.8472	197.2	2.5208	16
30	1	nus	2	-	807	8	7	100	22	1	33	40
Ind	bat	hd1	epr	h	10133.4	122.2	141.4	100	47.277	282.7	00 075	59.0
30	1	0	1	U	463	9	7	100	778	3	00.075	5
Ind	bat	hd1	epr	~	13498.3	186.0	132.4	100	1.8541	223.2	1 2125	52.9
30	1	0	1	I	779	5	3	100	67	1	4.5125	8
Ind	bat	hd1	epr	h	10133.4	122.2	141.4	100	47.277	282.7	00.075	59.0
30	1	0	2	U	463	9	7	100	778	3	80.875	5
Ind	bat	hd1	epr		13375.9	185.7	133.1	100	1.4652	224.7	3.7847	53.3
30	1	0	2	ſ	219	8	3	100	78	7	22	2
Ind	bat	hd2	epr		10528.2	122.2	220.4	100	41.437	470 5	84.701	122.
30	1	0	1	α	529	8	238.1	100	5	4/3.5	389	39
Ind	bat	hd2	epr		13990.8	185.6	159.6	400	2 5 6 2 5	279.1	10.416	68.7
30	1	0	1	r	173	6	1	100	3.5625	4	667	4
Ind	bat	hd2	epr		10528.2	122.2	a aa .	405	41.437	4=0 -	84.701	122.
30	1	0	2	b	529	8	238.1	100	5	473.5	389	39
Ind	bat	hd2	epr		13888.5	187.8	4.5.5.	4.65	3.1805	278.0	9.9652	68.4
30	1	0	2	r	203	8	159.1	100	56	4	78	8
Ind	bat		epr		13038.2	203.7	105.3		0.4722	168.1	1.4722	39.5
30	5	hd0	1	r	153	8	2	100	22	6	22	3
Ind	bat	hd0	epr	r	12855.5	204.1	104.8	100	0.4097	167.5	1.3263	39.1
			. ۳۰									

30	5		2		352	9	8		22	4	89	8
Ind	bat	hd5	epr	r	13259.0	201.6	118.9	100	1.0277	195.5	2.9027	46.6
30	5	nus	1		603	6	2	100	78	5	78	9
Ind	bat	hd5	epr	r	13109.2	198.8	119.6	100	0.8472	197.2	2.5208	47.0
30	5		2	-	845	4	7		22	1	33	5
Ind	bat	hd1	epr	r	13500.2	202.7	132.4	100	1.8541	223.2	4.3125	54.0
30 Ind	5 bat	U hd1			122777	200.6	3		0/	1	2 7096	5
30	Dat 5	0	2	r	122//./	200.0	155.1	100	1.4052	224.7	5.7960 11	54.5 7
Ind	bat	hd2	epr		13992.4	, 201.8	159.6		3 5555	, 279 1	10 437	, 69.7
30	5	0	1	r	977	5	1	100	56	4	5	9
Ind	bat	hd2	epr		13890.5	204.4	450.4	100	3.1666	278.0	10.020	69.5
30	5	0	2	r	394	4	159.1	100	67	4	833	3
Ind	bat	hd0	epr	r	13045.2	223.0	105.3	99.951	0.4722	168.1	1.4791	40.4
30	10	nuo	1	1	048	8	2	389	22	6	67	1
Ind	bat	hd0	epr	r	12862.3	223.4	104.8	99.944	0.4097	167.5	1.3263	40.0
30	10		2	•	568	5	8	444	22	4	89	6
Ind	bat	hd5	epr	r	13265.9	220.7	118.9	99.951	1.0277	195.5	2.9166	47.5
30	10		1		494	/	2	389	/8	5	6/	/
	bat	hd5	epr	r	13115.9	218.5	119.6	99.965	0.8472	197.2	2.5208	47.9
Ind	hat	hd1	2 enr		13506.8	0	132 /	270 00 058	1 85/11	1 223.2	1 3 2 6 3	5/ 9
30	10	0	201 1	r	025	222.2	3	33.338	67	1	4.3203 89	1
Ind	bat	hd1	epr		13384.4	220.2	133.1	99,965	1.4652	224.7	3.8333	55.2
30	10	0	2	r	371	2	3	278	78	7	33	5
Ind	bat	hd2	epr		13998.8	221.3	159.6	99.979	3.5555	279.1	10.437	70.6
30	10	0	1	r	737	2	1	167	56	4	5	7
Ind	bat	hd2	epr	5	13897.1	223.6	150.1	99.986	3.1597	278.0	10.083	70.4
30	10	0	2	I	089	7	159.1	111	22	4	333	1
Ind	bat	hd0	epr	h	14498.2	155.8	154.0	100	29.270	283.1	46.597	65.6
40	1	1100	1	2	246	9	6	100	833	5	222	8
Ind	bat	hd0	epr	r	19452.3	221.8	107.5	100	0.3472	160.6	0.4027	39.2
40	1		1		059	5	/		22	/	/8	
Ind	bat	hd0	epr	b	14498.2	155.8	154.0	100	29.270	283.1	46.597	65.6
40 Ind	L hat		2 opr		10057.7	9 221 5	108/		055	5 172 5	0 6507	0
40	1	hd0	2	r	777	6	5	100	89	2	22	42.0
Ind	bat		epr		14813.0				31.965	280.4	81.409	63.4
40	1	hd5	1	b	548	155.9	153.6	100	278	7	722	9
Ind	bat	h d T	epr		19586.7	222.6	124.9	100	0.5763	193.0	0.0275	53.0
40	1	nas	1	r	55	5	7	100	89	6	0.9375	2
Ind	bat	hd5	epr	h	14813.0	155 9	153.6	100	31.965	280.4	81.409	63.4
40	1	nas	2	2	548	100.0	155.0	100	278	7	722	9
Ind	bat	hd5	epr	r	19271.3	222.6	120.3	100	0.4166	186.1	0.7222	46.0
40	1	1.14	2		252	4	2		67	7	22	7
Ind	bat	ndi	epr	b	15034.2	155.8	142.8	100	49.006	272.0	/5.409	58.5
40	L bat	U hd1			54 10772 /	0 22/1	124.6		944	4 215 /	1 0592	5
40	1	0	ері 1	r	304	224.1 1	134.0	100	0.8125	215.4 Q	73 7.9283	ة.د 7
Ind	bat	hd1	epr		15034 2	155.8	142.8		49,006	272.0	75,409	58 5
40	1	0	2	b	54	8	2	100	944	4	722	3
Ind	bat	hd1	epr		19535.0	222.6	135.1	4.00	0.7083	216.6	1.8263	54.1
40	1	0	2	r	863	5	2	100	33	5	89	1
Ind	bat	hd2	epr	h	15391.0	155.8	239.1	100	45.118	462.3	80.361	122
40	1	0	1	U	544	7	1	100	056	9	111	122
Ind	bat	hd2	epr	r	20229.7	222.5	159.3	100	3.6041	266.9	6.2013	67.9
40	1	0	1	•	756	5	5	100	67	9	89	9

Ind	bat	hd2	epr	h	15391.0	155.8	239.1	100	45.118	462.3	80.361	122
40	1	0	2	a	544	7	1	100	056	9	111	122
Ind	bat	hd2	epr	5	20076.8	224.5	160.0	100	3.2152	267.9	5.7777	68.7
40	1	0	2	I	004	6	4	100	78	5	78	2
Ind	bat	hd0	epr	5	19453.2	235.1	107.5	100	0.3472	160.6	0.4027	40.6
40	5	nuu	1	I	217	2	7	100	22	7	78	3
Ind	bat	hd0	epr	r	19058.8	234.3	108.4	100	0.5138	172.5	0.6597	44.3
40	5	nuo	2	I.	661	9	5	100	89	2	22	1
Ind	bat	hd5	epr	r	19587.5	727	124.9	100	0.5763	193.0	0 0275	54.4
40	5	nus	1	1	924	257	7	100	89	6	0.9373	5
Ind	bat	hd5	epr	r	19272.3	236.9	120.3	100	0.4166	186.1	0.7222	175
40	5	nus	2	-	45	9	2	100	67	7	22	47.5
Ind	bat	hd1	epr	r	19773.3	238.2	134.6	100	0 8125	215.4	1.9652	55.2
40	5	0	1	-	423	6	1	100	0.0125	9	78	55.5
Ind	bat	hd1	epr	r	19536.0	227	135.1	100	0.7083	216.6	1.8263	55.5
40	5	0	2	-	728	237	2	100	33	5	89	4
Ind	bat	hd2	epr	r	20230.6	236.6	159.3	100	3.6041	266.9	6.2152	69.4
40	5	0	1	1	422	1	5	100	67	9	78	4
Ind	bat	hd2	epr	r	20077.6	238.8	160.0	100	3.2152	267.9	5.7916	70.1
40	5	0	2		569	4	4	100	78	5	67	7
Ind	bat	hd0	epr	r	19456.8	251.9	107.5	100	0.3472	160.6	0.4027	42.1
40	10	nuo	1	'	066	5	7	100	22	7	78	3
Ind	bat	hd0	epr	r	19062.8	251.2	108.4	100	0.5138	172.5	0.6597	45.8
40	10	nuo	2		093	7	5	100	89	2	22	1
Ind	bat	hd5	epr	r	19591.0	253.6	124.9	100	0.5763	193.0	0.9444	55.9
40	10	nus	1	'	458	4	7	100	89	6	44	5
Ind	bat	hd5	epr	r	19276.1	253.6	120.3	100	0.4166	186.1	0.7222	49
40	10	110.5	2		466	3	2	100	67	7	22	75
Ind	bat	hd1	epr	r	19776.8	254.6	134.6	100	0 8125	215.4	1.9722	56.8
40	10	0	1	'	605	7	1	100	0.0125	9	22	50.0
Ind	bat	hd1	epr	r	19539.7	253.6	135.1	100	0.7083	216.6	1.8333	57.0
40	10	0	2		28	4	2	100	33	5	33	4
Ind	bat	hd2	epr	r	20233.9	252.9	159.3	100	3.5902	266.9	6.2291	70.9
40	10	0	1		408	7	5	100	78	9	67	4
Ind	bat	hd2	epr	r	20081.0	255 /	160.0	100	3.2013	267.9	5 8125	71.6
40	10	0	2	'	344	255.4	4	100	89	5	5.0125	7

Annex 3: Ulm Thermal Side

The results from the simulation runs of the first six months of the year are reported in tabular form in the Annex 3.

	Sim name	Qprod_ulm	Erod	Qcons_ein	Qcons_ulm	Qlosses
	UNIT	[MWh]	[MWh]	[MWh]	[MWh]	[MWh]
PV50	hgridInfinite_baseline	4955	0	4090	0	859
	hgrid100_controlA	4073	892	4081	25	841
	hgrid200_controlA	4135	1020	4090	170	879
	hgrid300_controlA	4193	1135	4090	315	893
	hgrid400_controlA - DaRisimulare	4193	1135	4090	315	893
	hgrid500_controlA	4304	1231	4090	521	887
	hgridInfinite_controlA	4410	1233	4090	636	878
	hgrid100_controlB	4222	758	4090	7	861
	hgrid200_controlB	4225	819	4090	68	867
	hgrid300_controlB	4235	862	4090	116	873
	hgrid400_controlB	4245	893	4090	151	878
	hgrid500_controlB	4252	919	4090	179	881
	hgridInfinite_controlB	4263	956	4090	221	885
PV75	hgridInfinite_baseline	4955	0	4090	0	859
	hgrid100_controlA	3925	1050	4087	25	844
	hgrid200_controlA	3971	1222	4091	200	884
	hgrid300_controlA	4027	1397	4091	391	904
	hgrid400_controlA	4085	1510	4090	546	907
	hgrid500_controlA	4139	1582	4090	675	901
	hgridInfinite_controlA	4293	1612	4090	881	883
	hgrid100_controlB	4089	896	4090	8	863
	hgrid200_controlB	4089	986	4090	93	872
	hgrid300_controlB	4103	1049	4090	161	880
	hgrid400_controlB	4117	1095	4090	213	886
	hgrid500_controlB	4128	1133	4090	255	890
	hgridInfinite_controlB	4145	1197	4091	324	896

Annex 4: Ulm Electrical Side

The results from the simulation runs of the first six months of the year are reported in tabular form in the Annex 4.

PV50%

strategy	hg	NL	MTL	DTL	MLL	DLL	MVS
[-]	[-]	[%]	[%]	[%]	[%]	[%]	[%]
Baseline	Hg infinite	60.8	128.33	8.25	140.93	10.23	105.93
Control A	Hg infinite	50.3	102.46	0.003	142.27	10.28	95.13
Control A	Hg 100	53.71	128	2.98	142.27	10.28	105.63
Control A	Hg 200	52.5	128.33	1.904	141.94	10.27	105.93
Control A	Hg 300	51.356	123.47	0.98	142.27	10.27	102.73
Control A	Hg 400	51.32	118.02	0.965	142.27	10.27	97.93
Control A	Hg 500	50.31	115.38	0.02	142.27	10.28	97.73
Baseline	Hg infinite	60.8	128.33	8.25	140.93	10.23	105.93
Control B	Hg 100	53.1	128.33	2.53	141.94	10.28	105.93
Control B	Hg 200	55.044	128.33	4.19	141.61	10.27	105.93
Control B	Hg 300	54.5	128.33	3.73	141.61	10.27	105.93
Control B	Hg 400	54.04	128.33	3.362	141.94	10.27	105.93
Control B	Hg 500	53.75	128.33	3.11	141.94	10.28	105.93
Control B	Hg infinite	53.52	128.33	2.914	141.61	10.285	105.93

PV 75%

strategy	hg	NL	MTL	DTL	MLL	DLL	MVS
[-]	[-]	[%]	[%]	[%]	[%]	[%]	[%]
Baseline	Hg infinite	112.25	185.08	13.83	204.97	15.5	142.73
Control A	Hg infinite	90.8	123.25	0.0542	206.43	15.6	133.43
Control A	Hg 100	99.8	185.08	5.91	205.85	15.5	142.73
Control A	Hg 200	97.3	184.45	4.238	206.43	15.55	142.43

Control A	Hg 300	94.5	174.79	2.48	206.43	15.55	136.43
Control A	Hg 400	92.3	172.8	1.09	206.43	15.55	135.23
Control A	Hg 500	91.11	162.1	0.3	206.43	15.6	133.43
Baseline	Hg infinite	112.25	185.08	13.83	204.97	15.5	142.73
Control B	Hg 100	97.5	185.08	4.435	205.85	15.54	142.73
Control B	Hg 200	102.12	184.53	7.44	206.43	15.51	142.43
Control B	Hg 300	100.8	185.08	6.58	205.85	15.53	142.73
Control B	Hg 400	99.88	185.08	5.985	205.85	15.522	142.73
Control B	Hg 500	99.22	185.08	5.531	205.85	15.54	142.73
Control B	Hg infinite	98.64	184.53	5.188	206.43	15.55	142.43

Annex 5: Ulm Power to Gas scenario

Electrical grid model

Inside the project for both test sides, Einsingen and Hittistetten, a simulation model in power factory was built by HSU. Therefore, the real network structure was used and implemented in the model. To create a time course in 15 minute steps for a whole year standard load profiles (SLP) of the distribution grid operator (DSO) were used [2]. SLP's are the state of the art procedure of all DSO's for the estimation of the customers demand. SLP's are categorized in several groups like household, industry or agriculture. With the information from Stadtwerke Ulm/Neu-Ulm Netze GmbH the customers in the test sites were categorized into these groups. In addition every value of the SLP has to be multiplied by yearly energy demand of the customers.

$$P_{customer} = SLP * E_{customer}$$

With

P_{customer}: electrical power of the customer in kW

SLP: Standard Load Profile in kW/kWh

Ecustomer: yearly Energy demand of the customer in kWh

For the calculation of the PV-feed in a matlab library, PVlib [5], was used. Therfore various input parameters are necessary which are listed in Table 2. For the different irradiations data from CAMS-irradiation-service [6] was used.

	Element	Parameter	unit
Grid structure	Cables	Cable Length	m
		Cable size [mm ²]	mm²
	Transformer	Nominal power	kW
		Transformer type	
Demand	Households	Standard load profiles	kW/kWh
	Industry	Yearly energy demand	kWh
	Agriculture		
PV-feed in	Photovoltaik systems	Nominal power	kWp
		Orientation	0
		Inclination	o
	Irradiation	Global horizontal irradiation	W/m²
		Beam normal irradiation	W/m²
		Diffuse horizontal irradiation	W/m²
	Temperature	Temperature	°C

Table 2: input	parameter	for simulation	model o	of the testsides
Tubic 2. mput	purumeter j	or sinnanation	moucro	j the testshaes

Gas grid model

The Figure 23 shows the way of the data preparation for the gas grid simulation model. . The data base sources are an extraction from LIDS and SAP of the Stadtwerke Ulm/Neu-Ulm Netze GmbH. HSU prepared the topology and the demand of the customers for the simulation in STANET by using QGIS

GIS-Data Source, LIDS Data Source, SAP Swu Allocate Meter- and Grid Connection Points, KNIME Structure and Format Data, KNIME User-Defined Import, STANET Grid Model Calculation, STANET

(geo information system tool) and KNIME (an open source data mining tool). With the transferred data into STANET is it possible to create almost automated a simulation model of the grid.

Figure 23: data preparation for the automatically creation of the gas grid simulation model

Figure 24 visualise the two grid models and show the structure. The models cover a bigger area than the test sides. This is caused of the connection points to the higher pressure grid level. Like the Transformer station in the electrical grid.

Figure 24: Overview of the two gas grid models from sides Hittisteten (left), Einsingen (middle) and the zoomed test side in Einsingen (right)

Table 1 gives a feeling for the range of the two gas grid models. Einsingen is for every Parameter nearly doubled as Hittistetten. However, with the developed data process is it not that big difference to model such grid models for simulation and analysis. That is also an important tool for planning and operating the gas grid by the DSO.

Parameter	Einsingen	Hittistetten
Number of Nodes	1,106	522
Number of Pipes	1,133	559
Number of Pressure controller	2	1
Number of annual demand	1 120	07
from meter	1,150	97
Pipe Volume [m ³]	379	59
Pipe length [km]	46,1	10,4

Table 1 Key values of the two gas grid models at the area at Einsingen and Hittistetten

Electrolyzer

For the conversion from electrical power to hydrogen, the technical parameter of the Silyzer 100 was used in the simulation. The silyzer is developed by Siemens and purchasable over the company [7]. The parameters of the Silyzer 100 are listed in Table 3. The produced hydrogen was calculated by following formula:

$$H_2 = 2.113 * \exp(-0.001648 * P_{el})$$

H₂: produced hydrogen in kg

P_{el}: electrical surplus in kW

Parameter	Value	unit
Nominal power	100	kW
efficiency	50 - 60	%
Nominal power gas	20.022	Nm³/h
Hydrogen production	18	Kg/MW
Output pressure	50	Bar
Maximum power (overload)	300	%
Warm start	<10	Sec
Life time	>60000	h

Table 3: Parameters of the Silyzer 100

A Matlab script did the calculation of the produced hydrogen. For the script only the loadflow at the transformer and the number of used electrolyze stacks are needed. If there, more than one stack is necessary they are connected in parallel and the consumption, that all stacks consume the same power, was made. For the number of stacks the maximum PV-feed in of the year was precise and two approaches were done. The first is that the electrolyzer should work within the nominal power and the second was the utilization of the maximum overload of 300 %. The second variation shows worse efficiency and less investment costs. For the conversion of H_2 in kg into H_2 the calorific value 33.3 in kWh/kg [4], a) as used.

Methanation

Based on the out coming hydrogen (H2) from the electrolysis will be the methanation output be calculated. The methanation is much less flexible than the electrolysis. For a first assumption, an easy

to handle definition was fixed. The assumed nominal power of the methanation is the average value of the maximum H2 production (Energy) over day and the methane production within 12 h(P_CH4_nominal=E_H2_max_day/12h). That represent the approach that the hydrogen production by electrical PV power and electrolysis over the day will be produced during the night to methane. Table 4 gives an over view of the resulting nominal methanation power and the size of the hydrogen buffer storage for the different control strategies. *Table 4* gives an overview of the resulting nominal methanation power and the size of the hydrogen buffer storage for the different control strategies.

$$\dot{Q}_{CH4} = \frac{\hat{Q}_{H2,1d}}{12h}$$

 $\hat{Q}_{H2.1d}$: Maximum daily hydrogen production

 \dot{Q}_{CH4} : Calculaded input nominal power of the methanation

The volume of a hydrogen tank can be calculated by the following equation:

$$V_1 = \frac{V_{standard} \cdot p_{standard}}{p_1}$$

p: Pressure

V: Volume

 p_1 is the aimed pressure of the buffer hydrogen storage (e.g. 750 bar). p_standard is the standard pressure value for the standard conditions of the gas.

The controller of the methanation starts working if the hydrogen buffer storage has enough hydrogen for one hour production and stop the methane production if the charge drops under this level. The efficiency of the methanation process was fixed to 60 %.

With this approach is the volume of a hydrogen buffer storage in Einsingen from 26,031 Nm³ up to 43,159 Nm³ and in Hittistetten from 102,040 Nm³ up to 160,884 Nm³. For a reduction of the simulation effort and time is a reduction of the variation based on a technical and economic point of view done. All volumes at 750 bars in *Table 4* are in a technical dimension that is realistic to handle. The investment costs will be more economic for a bigger hydrogen buffer storage instead a methanation with a higher nominal power. The hydrogen production is decreasing with a lower number of stackes. This is caused by the lesser efficiency. More losses means more heat production in the process. Because of the Power to Heat approach from hybrid scenario 1 in the same area is it not possible to use the heat direct there. Only the additional usage of the DHN can make It possible to transport the heat power in other areas of the city where it could be used. However, the DHN is not in the story line of hybrid scenario 1.

Test area	Scenario	Nominal methanation power [kW] left, [Nm³/h] right		Hydrogen buffer storage capacity [Nm³]	Hydrogen buffer storage (tank) [m³] at 750 bar
Einsingen	Control 3, 3 Stacks, 50%-PV	530.27	3.981	26,031	35
Einsingen	Control 4, 3 Stacks, 50%-PV	532.13	3.995	26,040	34.7
Einsingen	Control 3, 5 Stacks, 75%-PV	916.68	6.882	42,845	57.1
Einsingen	Control 4, 5 Stacks, 75%-PV	917.48	6.888	43,159	57.5
Einsingen	Control 3, 13 Stacks, 75%-PV	1937.39	14,545	35,313	47.08
Einsingen	Control 4, 13 Stacks, 75%-PV	1934.06	14,52	35,574	47.43
Hittistetten	11 Stacks, 50%- PV	1662.34	12.48	130,064	173.41
Hittistetten	4 Stacks, 50%- PV	829.84	6.23	102,040	136.05
Hittistetten	13 Stacks, 75%- PV	1984.68	14.9	160,884	214.51
Hittistetten	4 Stacks, 75%- PV	865.80	6.5	110,825	147,76

Table 4: results of the power to gas analysis

References

[1] BDEW Bundesverband der Energie- und Wasserwirtschaft e.V.; Verband kommunaler Unternehmen e.V. (VKU); GEODE – Groupement Européen des entreprises et Organismes de Distribution d'Énergie, EWIV; BDEW/VKU/GEODE Leitfaden; Berlin, 30. Juni 2011

[2] Stadtwerke Ulm/Neu-Ulm Netze GmbH, Gesichtet 16.09.2016

https://www.ulm-netze.de/services/downloads.html

[3] David E. Stakic, Holger Ruf, Konstantin Ditz, Daniel Funk, Gerd Heilscher, Florian Meier; Simulation of Local Energy Surplus Usage in Hybrid Grids With a High PV Penetration Rate; EU PVSEC 2016, Munich; Year 2016; Poster + Paper

[4] Dr. Rüdiger Paschotta (G+), RP Photonics Consulting GmbH; RP-Energie-Lexikon; 78073, Bad Dürrheim, Germany, 23.12.2016

a) https://www.energie-lexikon.info/wasserstoff.html

b) https://www.energie-lexikon.info/methan.html?s=ak

[5] Sandia Corporation, 23.12.2016, https://pvpmc.sandia.gov/

[6] SoDa; Center for Observation, Impacts, Energy (O.I.E.) 1 rue Claude Daunesse BP 207 06904 Sophia Antipolis Cedex – France; 23.12.2016

http://www.soda-pro.com/web-services#radiation

[7] Simens AG; SILYZER; Ideen für eine nachhaltige Zukunft: Der SILYZER öffnet Perspektiven; 23.12.2016

http://www.industry.siemens.com/topics/global/de/pem-elektrolyseur/silyzer/seiten/silyzer.aspx

[8] DENA, power-to-gas Plattform, 23.12.2016 <u>www.powertogas.info</u>

[9] Markus Lehner, Robert Tichler, Horst Steinmüller, Markus Koppe; Springer Cham Heidelberg New York Dordrecht London; Power-to-Gas: Technology and Business Models; ISBN 978-3-319-03994-7; Year 2014

Disclaimer

The OrPHEuS project is co-funded by the European Commission under the 7th Framework Programme "Smart Cities" 2013.

The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Commission.

The European Commission is not responsible for any use that may be made of the information contained therein.

Contacts

Project coordinator

Ingrid Weiss, Simon Challet & Silvia Caneva @ WIP – Renewable Energies Sylvensteinstrasse 2, Munich, Germany Email: <u>Ingrid.weiss@wip-munich.de</u> / Telephone: 0049 (0) 720 12 741 Email: <u>silvia.caneva@wip-munich.de</u> / Telephone: 0049 (0) 720 12 733 Email: <u>simon.challet@wip-munich.de</u> / Telephone: 0049 (0) 720 12 740

WP Leader

Helfried Brunner @ AIT Giefinggasse 2 | 1210 Vienna | Austria

Email: helfried.brunner@ait.ac.at / Telephone: 0043 (0) 664 620 78 75

