

Daniel Schwabeneder

Junior Researcher, Vienna University of Technology

ECONOMIC MODELS

FOR HYBRID ENERGY GRIDS IN SMART CITIES

SMARTGREENS 2015

Lisbon, Portugal, 20 – 22 May, 2015 European Project Space Session - Smart Cities and Green ICT Systems

OUTLINE

- Motivation
 - Introduction
 - Market Structure
- Business models
 - Methodology for design and evaluation
- Economic Models
 - Customers
 - Supply Companies
 - Distribution System Operators
- Conclusion & Outlook

MOTIVATION

Introduction

Major concepts of the OrPHEuS project:

• Hybrid point-of-view:

Different energy networks are considered as one hybrid energy network via coupling technologies (e.g. CHP, heat pumps, ...).

• Cooperative concept:

Development of hybrid cooperative control strategies and corresponding business models among different market participants \rightarrow Win-win situations

For the economic validation of new control strategies and business models a formal framework is required, capable of evaluating the (economic) benefits of each involved stakeholder.

 \rightarrow Individual optimization problems for each market participants

21.05.2015

MOTIVATION

Market structure and major interactions

21.05.2015

BUSINESS MODELS

Methodology for design and evaluation

- 1. Definition Techno-Economic Set-up:
 - Involved market participants
 - Considered Technology Portfolio
 - Ownership structure of Technology Portfolio
 - Which technologies are controlled by control strategy?
 - Who operates the controller?
 - Operation mode of controller (cost-minimizing, network-friendly, CO2 reduction, ...)
 - Tariff design
 - ...
- 2. Economic Trade-Off analysis of default case vs. Alternative Business Model
 - Pareto-criterion
- 3. Robustness test
- 4. Business model replication and transferability

Customers

Objective: Minimize cost for meeting the demand for energy services

The model should

- consider multiple energy domains simultaneously and
- be flexibly adaptable to different technology portfolios
- and to different tariff types.

All quantities (demand d(t), (residual) load q(t), ... in kWh/h) and prices (tariff p(t) in ct/kWh) are written as 3-dimensional vectors:

$$\mathbf{d}(t) := \begin{pmatrix} d^{El}(t) \\ d^{Gas}(t) \\ d^{Heat}(t) \end{pmatrix}, \quad \mathbf{q}(t) := \begin{pmatrix} q^{El}(t) \\ q^{Gas}(t) \\ q^{Heat}(t) \end{pmatrix}, \quad \mathbf{p}(t) := \begin{pmatrix} p^{El}(t) \\ p^{Gas}(t) \\ p^{Heat}(t) \end{pmatrix}$$

6

ORPHE

Customers

Starting with a basic Standard (passive) Customer Model, the technology portfolio can be gradually extended by adding new terms and constraints in order to describe different customer types. E.g. adding a generation and a storage technology:

$$\min \ C \stackrel{!}{=} \mathbf{I}_{gen} + \mathbf{I}_{store} + \sum_{k=1}^{N} \frac{1}{(1+r)^{k}} \cdot \sum_{t=1}^{8760} \left(\mathbf{p}(t)^{T} \cdot \mathbf{q}(t) + \mathbf{c}_{gen}(t) - \mathbf{p}_{feed}(t)^{T} \cdot \mathbf{q}(t) \right)$$

$$\min \ C \stackrel{!}{=} \sum_{k=1}^{N} \frac{1}{(1+r)^{k}} \cdot \sum_{t=1}^{8760} \mathbf{p}(t)^{T} \cdot \mathbf{q}(t) \longrightarrow$$
s.t. $\mathbf{q}(t) = \mathbf{d}(t)$
s.t. $\mathbf{q}(t) + \mathbf{q}_{gen}(t) + \mathbf{q}_{discharge}(t) = \mathbf{d}(t) + \mathbf{q}_{feed}(t) + \mathbf{q}_{charge}(t)$

$$\mathrm{SOC}(t) = (1 - \mathrm{loss}_{standby}) \cdot \mathrm{SOC}(t-1) + \eta_{in} \cdot \mathbf{q}_{charge}(t) - \eta_{out}^{-1} \cdot \mathbf{q}_{discharge}(t)$$

$$\mathbf{q}_{gen}(t) \leq \bar{\mathbf{q}}_{gen},$$

$$\frac{\mathrm{SOC}}{\mathrm{q}_{charge}(t)} \leq \mathrm{SOC}(t) \leq \mathrm{SOC}$$

$$\mathbf{q}_{charge}(t) \leq \bar{\mathbf{q}}_{discharge}$$

$$\mathbf{q}_{discharge}(t) \leq \bar{\mathbf{q}}_{discharge}$$

$$\mathbf{q}(t), \mathbf{q}_{gen}(t), \mathbf{q}_{charge}(t), \mathbf{q}_{discharge}(t) \geq 0$$

21.05.2015

Economic models for hybrid energy grids in smart cities

7

ORPHE

Customers

21.05.2015

Economic models for hybrid energy grids in smart cities

ORPHEUS

Customers

21.05.2015

Economic models for hybrid energy grids in smart cities

ORPHEUS

21.05.2015

ECONOMIC MODELS

Supply Companies

Objective: Maximize Profit

Revenue:

- Energy retailed to customers (different customer groups with different tariffs)
- Wholesale market sales
- (Balancing markets)

Cost:

- Energy purchased from wholesale market
 - Spot market
 - Futures
- Long-term contracts (e.g. gas)
- Cost for generation/storage/conversion (investment cost, fuel cost, ...)
- Cost for balancing energy

Supply Companies

Example optimization problem:

$$\max \Pi \stackrel{!}{=} -I_{gen} + \sum_{y=1}^{N} \frac{1}{(1+r)^{y}} \cdot \sum_{t=1}^{8760} \left(\sum_{g \in G} \left(\mathbf{p}_{retail,g}(y,t)^{T} \cdot \sum_{k \in g} \mathbf{q}_{g,k}(y,t) \right) + \mathbf{p}_{spot,sell}(y,t)^{T} \cdot \mathbf{q}_{spot,sell}(y,t) \right) \\ - \mathbf{c}_{gen}(y,t)^{T} \cdot \mathbf{q}_{gen}(y,t) - \mathbf{p}_{spot,buy}(y,t)^{T} \cdot \mathbf{q}_{spot,buy}(y,t) \\ - \mathbf{p}_{future}(y,t)^{T} \cdot \mathbf{q}_{future}(y,t) - \mathbf{p}_{bal}(y,t)^{T} \cdot \Delta \mathbf{q}(y,t) \right) \\ \text{s.t. } \mathbf{q}_{gen}(y,t) + \mathbf{q}_{future}(y,t) + \mathbf{q}_{spot,buy}(y,t) = \sum_{g \in G} \sum_{k \in g} \mathbf{q}_{scheduled,g,k}(y,t) + \mathbf{q}_{spot,sell}(y,t) \\ \Delta \mathbf{q}(y,t) = \sum_{g \in G} \sum_{k \in g} \left(\mathbf{q}_{g,k}(y,t) - \mathbf{q}_{scheduled,g,k}(y,t) \right) \\ \mathbf{q}_{gen}(y,t) \leq \bar{\mathbf{q}}_{gen}(y,t) = \sum_{g \in G} \sum_{k \in g} \bar{\mathbf{q}}_{gen}(y,t) = \sum_{g \in G} \sum_{k \in g} \bar{\mathbf{q}}_{gen}(y,t) = \sum_{g \in G} \sum_{k \in g} \bar{\mathbf{q}}_{gen}(y,t) = \bar{\mathbf{q}}_{gen}(y,t) \leq \bar{\mathbf{q}}_{gen}(y,t) = \bar{\mathbf{q}}_{gen}(y,t$$

Similar structure to customer model:

- Various generation, conversion and energy storage technologies can be added.
- \rightarrow More possibilities for energy procurement (different markets)
- → Different tariff types

21.05.2015

ORPHE

21.05.2015

ECONOMIC MODELS

Distribution System Operators

Objective: Maximize Profit

Revenue:

 Network charges for energy delivered to customers via network (different customer groups with different tariffs)

Important aspect: Regulation

Price-cap, revenue-cap → incentives for underinvestment Rate-of-return, Cost-of-service

 \rightarrow Incentives for overinvestment

Cost:

Investment cost (annual depreciation) and maintenance cost for assets (network components)

Incident-based vs. Conditionbased maintenance

Distribution System Operators

- First implementation: Basic mixed-integer re-investment planning model
- Logical structure: Options per asset (e.g. transformer) per year:

Distribution System Operators

• Extension (currently in development)

21.05.2015

ORPHEUS

CONCLUSION & OUTLOOK

Conclusion

A formal framework has been developed describing the economic interactions in hybrid energy retail markets that enables:

- Simultaneous consideration of different energy domains
- Individual evaluation of benefits for different market participants
- Flexible consideration of different technology portfolios and business model designs

Outlook

- Scaling the formal framework to specific use cases in the OrPHEuS demonstration sites (currently in progress)
- Extending the Distribution System Operator model (currently in progress)
- Quantitative evaluation of different Business Model designs and Control Strategies

21.05.2015

CONTACTS AND DISCLAIMER

Project coordinator

The OrPHEuS project is co-funded by the European Commission within the 7th Framework Programme 'Smart Cities' 2013. The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Commission. The European commission is not responsible for any use that may be made of the information contained therein.

21.05.2015

RPHE